Electric power networks are spatially distributed systems, subject to different magnitude and recurrence of earthquakes, that play a fundamental role in the well-being and safety of communities. Therefore, identification of critical components is of paramount importance in retrofit prioritization. This article presents a comparison of five seismic performance assessment models (M1 to M5) of increasing complexity. The first two models (M1 and M2) approach the problem from a connectivity perspective, whereas the last three (M3 to M5) consider also power flow analysis. To illustrate the utility of the five models, the well-known IEEE-118 test case, assumed to be located in the central United States, is considered. Performances of the five models are compared using both system-level and component-level measures. Spearman rank correlation ρ is computed between results of each model. Highest ρ values, at both system- and component-level, are obtained, as expected, between M1 and M2, and within models M3 to M5. The ρ values between component-level measures are relatively high across all models, indicating that simpler ones (M1 and M2) are appropriate for vulnerability assessment and retrofit prioritization. The complex flow-based models (M3 to M5) are suitable if actual performance of the systems is desired, as it is the case when the power network is considered within a larger set of interconnected infrastructural systems. © 2014 Computer-Aided Civil and Infrastructure Engineering.

Models for Seismic Vulnerability Analysis of Power Networks: Comparative Assessment / Cavalieri, Francesco; Franchin, Paolo; J., Buritica; Solomon, Tesfamariam. - In: COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING. - ISSN 1093-9687. - STAMPA. - 29:8(2014), pp. 590-607. [10.1111/mice.12064]

Models for Seismic Vulnerability Analysis of Power Networks: Comparative Assessment

CAVALIERI, FRANCESCO;FRANCHIN, Paolo;
2014

Abstract

Electric power networks are spatially distributed systems, subject to different magnitude and recurrence of earthquakes, that play a fundamental role in the well-being and safety of communities. Therefore, identification of critical components is of paramount importance in retrofit prioritization. This article presents a comparison of five seismic performance assessment models (M1 to M5) of increasing complexity. The first two models (M1 and M2) approach the problem from a connectivity perspective, whereas the last three (M3 to M5) consider also power flow analysis. To illustrate the utility of the five models, the well-known IEEE-118 test case, assumed to be located in the central United States, is considered. Performances of the five models are compared using both system-level and component-level measures. Spearman rank correlation ρ is computed between results of each model. Highest ρ values, at both system- and component-level, are obtained, as expected, between M1 and M2, and within models M3 to M5. The ρ values between component-level measures are relatively high across all models, indicating that simpler ones (M1 and M2) are appropriate for vulnerability assessment and retrofit prioritization. The complex flow-based models (M3 to M5) are suitable if actual performance of the systems is desired, as it is the case when the power network is considered within a larger set of interconnected infrastructural systems. © 2014 Computer-Aided Civil and Infrastructure Engineering.
2014
01 Pubblicazione su rivista::01a Articolo in rivista
Models for Seismic Vulnerability Analysis of Power Networks: Comparative Assessment / Cavalieri, Francesco; Franchin, Paolo; J., Buritica; Solomon, Tesfamariam. - In: COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING. - ISSN 1093-9687. - STAMPA. - 29:8(2014), pp. 590-607. [10.1111/mice.12064]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/563607
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 53
social impact