The present work reports on the production and characterization of polyhydroxyalkanoates (PHAs) with different valerate contents, which were synthesized from microbial mixed cultures, and the subsequent development of nanocomposites incorporating bacterial cellulose nanowhiskers (BCNW) via solution casting processing. The characterization of the pure biopolyesters showed that the properties of PHAs may be strongly modified by varying the valerate ratio in the poly(3-hydroxybutyrate-. co-3-hydroxyvalerate) (PHBV) copolymer, as expected. Increasing the valerate content was seen to greatly decrease the melting temperature and enthalpy of the material, as well as its rigidity and stiffness, resulting in a more ductile behaviour. Additionally, the higher valerate PHA displayed higher permeability to water and oxygen and higher moisture sensitivity. Subsequently, BCNW were incorporated into both PHA grades, achieving a high level of dispersion for a 1. wt.-% loading, whereas some agglomeration took place for 3. wt.-% BCNW. As evidenced by DSC analyses, BCNW presented a nucleating effect on the PHA matrices. BCNW also increased the thermal stability of the polymeric matrices when properly dispersed due to strong matrix-filler interactions. Barrier properties were seen to depend on relative humidity and improved at low nanofiller loadings and low relative humidity. © 2013 Elsevier B.V.

Characterization of polyhydroxyalkanoates synthesized from microbial mixed cultures and of their nanobiocomposites with bacterial cellulose nanowhiskers / Marta Martinez, Sanz; Villano, Marianna; Catarina, Oliveira; Maria G. E., Albuquerque; Majone, Mauro; Maria, Reis; Amparo Lopez, Rubio; Jose M., Lagaron. - In: NEW BIOTECHNOLOGY. - ISSN 1871-6784. - STAMPA. - 31:4(2014), pp. 364-376. [10.1016/j.nbt.2013.06.003]

Characterization of polyhydroxyalkanoates synthesized from microbial mixed cultures and of their nanobiocomposites with bacterial cellulose nanowhiskers

VILLANO, MARIANNA;MAJONE, Mauro;
2014

Abstract

The present work reports on the production and characterization of polyhydroxyalkanoates (PHAs) with different valerate contents, which were synthesized from microbial mixed cultures, and the subsequent development of nanocomposites incorporating bacterial cellulose nanowhiskers (BCNW) via solution casting processing. The characterization of the pure biopolyesters showed that the properties of PHAs may be strongly modified by varying the valerate ratio in the poly(3-hydroxybutyrate-. co-3-hydroxyvalerate) (PHBV) copolymer, as expected. Increasing the valerate content was seen to greatly decrease the melting temperature and enthalpy of the material, as well as its rigidity and stiffness, resulting in a more ductile behaviour. Additionally, the higher valerate PHA displayed higher permeability to water and oxygen and higher moisture sensitivity. Subsequently, BCNW were incorporated into both PHA grades, achieving a high level of dispersion for a 1. wt.-% loading, whereas some agglomeration took place for 3. wt.-% BCNW. As evidenced by DSC analyses, BCNW presented a nucleating effect on the PHA matrices. BCNW also increased the thermal stability of the polymeric matrices when properly dispersed due to strong matrix-filler interactions. Barrier properties were seen to depend on relative humidity and improved at low nanofiller loadings and low relative humidity. © 2013 Elsevier B.V.
2014
polyhydroxyalkanoates
01 Pubblicazione su rivista::01a Articolo in rivista
Characterization of polyhydroxyalkanoates synthesized from microbial mixed cultures and of their nanobiocomposites with bacterial cellulose nanowhiskers / Marta Martinez, Sanz; Villano, Marianna; Catarina, Oliveira; Maria G. E., Albuquerque; Majone, Mauro; Maria, Reis; Amparo Lopez, Rubio; Jose M., Lagaron. - In: NEW BIOTECHNOLOGY. - ISSN 1871-6784. - STAMPA. - 31:4(2014), pp. 364-376. [10.1016/j.nbt.2013.06.003]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/560016
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 100
  • ???jsp.display-item.citation.isi??? 80
social impact