Different kinds of challenge can alter spontaneous ongoing electroencephalographic (EEG) rhythms in animal models, thus providing paradigms to evaluate treatment effects in drug discovery. The effects of challenges represented by pharmacological agents, hypoxia, sleep deprivation and transcranial magnetic stimulation (TMS) on EEG rhythms are here reviewed to build a knowledge platform for innovative translational models for drug discovery in Alzheimer's disease (AD). It has been reported that antagonists of cholinergic neurotransmission cause synchronisation of spontaneous ongoing EEG rhythms in terms of enhanced power of EEG low frequencies and decreased power of EEG high frequencies. Acetylcholinesterase inhibitors and serotonergic drugs may restore a normal pattern of EEG desynchronisation. Sleep deprivation and hypoxia challenges have also been reported to elicit abnormal synchronisation of spontaneous ongoing EEG rhythms in rodents. The feasibility and reproducibility of TMS have been demonstrated in rodents but information on a consistent modulation of EEG after TMS manipulation is very limited. Transgenic mice over-expressing human amyloid precursor protein complementary DNAs (cDNAs) harbouring the 'Swedish' mutation and PS-1 cDNAs harbouring the A264E mutation, which recapitulate some of the pathological features of AD, exhibit alterations of spontaneous ongoing EEG rhythms at several low and high frequencies. This does not appear, however, to be a consequence of beta-amyloid deposition in the brain. The present review provides a critical evaluation of changes of spontaneous ongoing EEG rhythms due to the experimental manipulations described above, in order to stimulate the promote more adherent models fitting dynamics in humans. © 2012 International Federation of Clinical Neurophysiology.

Effects of pharmacological agents, sleep deprivation, Hypoxia and transcranial magnetic stimulation on electroencephalographic rhythms in rodents: Towards translational challenge models for drug discovery in Alzheimer's disease / Babiloni, Claudio; Francesco, Infarinato; Fabienne, Aujard; Jesper Frank Bastlund, ; Marina, Bentivoglio; Giuseppe, Bertini; DEL PERCIO, Claudio; Paolo Francesco Fabene, ; Gianluigi, Forloni; Maria Trinidad Herrero Ezquerro, ; Francesco Mattia Noe, ; Fabien, Pifferi; Francisco Ros Bernal, ; Ditte Zerlang Christensen, ; Sophie, Dix; Richardson, Jill C.; Yves, Lamberty; Wilhelmus, Drinkenburg; Paolo Maria Rossini,. - In: CLINICAL NEUROPHYSIOLOGY. - ISSN 1388-2457. - 124:3(2013), pp. 437-451. [10.1016/j.clinph.2012.07.023]

Effects of pharmacological agents, sleep deprivation, Hypoxia and transcranial magnetic stimulation on electroencephalographic rhythms in rodents: Towards translational challenge models for drug discovery in Alzheimer's disease

BABILONI, CLAUDIO;Claudio Del Percio;
2013

Abstract

Different kinds of challenge can alter spontaneous ongoing electroencephalographic (EEG) rhythms in animal models, thus providing paradigms to evaluate treatment effects in drug discovery. The effects of challenges represented by pharmacological agents, hypoxia, sleep deprivation and transcranial magnetic stimulation (TMS) on EEG rhythms are here reviewed to build a knowledge platform for innovative translational models for drug discovery in Alzheimer's disease (AD). It has been reported that antagonists of cholinergic neurotransmission cause synchronisation of spontaneous ongoing EEG rhythms in terms of enhanced power of EEG low frequencies and decreased power of EEG high frequencies. Acetylcholinesterase inhibitors and serotonergic drugs may restore a normal pattern of EEG desynchronisation. Sleep deprivation and hypoxia challenges have also been reported to elicit abnormal synchronisation of spontaneous ongoing EEG rhythms in rodents. The feasibility and reproducibility of TMS have been demonstrated in rodents but information on a consistent modulation of EEG after TMS manipulation is very limited. Transgenic mice over-expressing human amyloid precursor protein complementary DNAs (cDNAs) harbouring the 'Swedish' mutation and PS-1 cDNAs harbouring the A264E mutation, which recapitulate some of the pathological features of AD, exhibit alterations of spontaneous ongoing EEG rhythms at several low and high frequencies. This does not appear, however, to be a consequence of beta-amyloid deposition in the brain. The present review provides a critical evaluation of changes of spontaneous ongoing EEG rhythms due to the experimental manipulations described above, in order to stimulate the promote more adherent models fitting dynamics in humans. © 2012 International Federation of Clinical Neurophysiology.
2013
electroencephalography; drug treatments; animal models; neurodegeneration; eeg
01 Pubblicazione su rivista::01a Articolo in rivista
Effects of pharmacological agents, sleep deprivation, Hypoxia and transcranial magnetic stimulation on electroencephalographic rhythms in rodents: Towards translational challenge models for drug discovery in Alzheimer's disease / Babiloni, Claudio; Francesco, Infarinato; Fabienne, Aujard; Jesper Frank Bastlund, ; Marina, Bentivoglio; Giuseppe, Bertini; DEL PERCIO, Claudio; Paolo Francesco Fabene, ; Gianluigi, Forloni; Maria Trinidad Herrero Ezquerro, ; Francesco Mattia Noe, ; Fabien, Pifferi; Francisco Ros Bernal, ; Ditte Zerlang Christensen, ; Sophie, Dix; Richardson, Jill C.; Yves, Lamberty; Wilhelmus, Drinkenburg; Paolo Maria Rossini,. - In: CLINICAL NEUROPHYSIOLOGY. - ISSN 1388-2457. - 124:3(2013), pp. 437-451. [10.1016/j.clinph.2012.07.023]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/559586
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact