When clustering asymmetric proximity data, only the average amounts are often considered by assuming that the asymmetry is due to noise. But when the asymmetry is structural, as typically may happen for exchange flows, migration data or confusion data, this may strongly affect the search for the groups because the directions of the exchanges are ignored and not integrated in the clustering process. The clustering model proposed here relies on the decomposition of the asymmetric dissimilarity matrix into symmetric and skew-symmetric effects both decomposed in within and between cluster effects. The classification structures used here are generally based on two different partitions of the objects fitted to the symmetric and the skew-symmetric part of the data, respectively; the restricted case is also presented where the partition fits jointly both of them allowing for clusters of objects similar with respect to the average amounts and directions of the data. Parsimonious models are presented which allow for effective and simple graphical representations of the results.
Classification of asymmetric proximity data / Vicari, Donatella. - In: JOURNAL OF CLASSIFICATION. - ISSN 0176-4268. - STAMPA. - 31:3(2014), pp. 386-420. [10.1007/s00357-014-9159-6]
Classification of asymmetric proximity data
VICARI, Donatella
2014
Abstract
When clustering asymmetric proximity data, only the average amounts are often considered by assuming that the asymmetry is due to noise. But when the asymmetry is structural, as typically may happen for exchange flows, migration data or confusion data, this may strongly affect the search for the groups because the directions of the exchanges are ignored and not integrated in the clustering process. The clustering model proposed here relies on the decomposition of the asymmetric dissimilarity matrix into symmetric and skew-symmetric effects both decomposed in within and between cluster effects. The classification structures used here are generally based on two different partitions of the objects fitted to the symmetric and the skew-symmetric part of the data, respectively; the restricted case is also presented where the partition fits jointly both of them allowing for clusters of objects similar with respect to the average amounts and directions of the data. Parsimonious models are presented which allow for effective and simple graphical representations of the results.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.