BACKGROUND: Mutations of the p53 oncosuppressor gene are amongst the most frequent aberration seen in human cancer. Some mutant (mt) p53 proteins are prone to loss of Zn(II) ion that is bound to the wild-type (wt) core, promoting protein aggregation and therefore unfolding. Misfolded p53 protein conformation impairs wtp53-DNA binding and transactivation activities, favouring tumor growth and resistance to antitumor therapies. Screening studies, devoted to identify small molecules that reactivate mtp53, represent therefore an attractive anti-cancer therapeutic strategy. Here we tested a novel fluorescent curcumin-based Zn(II)-complex (Zn-curc) to evaluate its effect on mtp53 reactivation in cancer cells. METHODS: P53 protein conformation was examined after Zn-curc treatment by immunoprecipitation and immunofluorescence assays, using conformation-specific antibodies. The mtp53 reactivation was evaluated by chromatin-immunoprecipitation (ChIP) and semi-quantitative RT-PCR analyses of wild-type p53 target genes. The intratumoral Zn-curc localization was evaluated by immunofluorescence analysis of glioblastoma tissues of an ortothopic mice model. RESULTS: The Zn-curc complex induced conformational change in p53-R175H and -R273H mutant proteins, two of the most common p53 mutations. Zn-curc treatment restored wtp53-DNA binding and transactivation functions and induced apoptotic cell death. In vivo studies showed that the Zn-curc complex reached glioblastoma tissues of an ortothopic mice model, highlighting its ability to crossed the blood-tumor barrier. CONCLUSIONS: Our results demonstrate that Zn-curc complex may reactivate specific mtp53 proteins and that may cross the blood-tumor barrier, becoming a promising compound for the development of drugs to halt tumor growth.

A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells / A., Garufi; D., Trisciuoglio; M., Porru; C., Leonetti; Stoppacciaro, Antonella; D'Orazi, Valerio; M., Avantaggiati; A., Crispini; D., Pucci; G., D'Orazi. - In: JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH. - ISSN 1756-9966. - ELETTRONICO. - 32:1(2013), p. 72. [10.1186/1756-9966-32-72]

A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells

STOPPACCIARO, ANTONELLA;D'ORAZI, VALERIO;
2013

Abstract

BACKGROUND: Mutations of the p53 oncosuppressor gene are amongst the most frequent aberration seen in human cancer. Some mutant (mt) p53 proteins are prone to loss of Zn(II) ion that is bound to the wild-type (wt) core, promoting protein aggregation and therefore unfolding. Misfolded p53 protein conformation impairs wtp53-DNA binding and transactivation activities, favouring tumor growth and resistance to antitumor therapies. Screening studies, devoted to identify small molecules that reactivate mtp53, represent therefore an attractive anti-cancer therapeutic strategy. Here we tested a novel fluorescent curcumin-based Zn(II)-complex (Zn-curc) to evaluate its effect on mtp53 reactivation in cancer cells. METHODS: P53 protein conformation was examined after Zn-curc treatment by immunoprecipitation and immunofluorescence assays, using conformation-specific antibodies. The mtp53 reactivation was evaluated by chromatin-immunoprecipitation (ChIP) and semi-quantitative RT-PCR analyses of wild-type p53 target genes. The intratumoral Zn-curc localization was evaluated by immunofluorescence analysis of glioblastoma tissues of an ortothopic mice model. RESULTS: The Zn-curc complex induced conformational change in p53-R175H and -R273H mutant proteins, two of the most common p53 mutations. Zn-curc treatment restored wtp53-DNA binding and transactivation functions and induced apoptotic cell death. In vivo studies showed that the Zn-curc complex reached glioblastoma tissues of an ortothopic mice model, highlighting its ability to crossed the blood-tumor barrier. CONCLUSIONS: Our results demonstrate that Zn-curc complex may reactivate specific mtp53 proteins and that may cross the blood-tumor barrier, becoming a promising compound for the development of drugs to halt tumor growth.
2013
Mutant p53; Protein conformation; p53 transcriptional activity; DNA binding; Zinc complex; Cancer therapy; Glioblastoma; Gene expression
01 Pubblicazione su rivista::01a Articolo in rivista
A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells / A., Garufi; D., Trisciuoglio; M., Porru; C., Leonetti; Stoppacciaro, Antonella; D'Orazi, Valerio; M., Avantaggiati; A., Crispini; D., Pucci; G., D'Orazi. - In: JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH. - ISSN 1756-9966. - ELETTRONICO. - 32:1(2013), p. 72. [10.1186/1756-9966-32-72]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/558985
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 64
social impact