Nerve growth factor (NGF) levels are highly increased in inflamed tissues, but their role is unclear. We show that NGF is part of a regulatory loop in monocytes: inflammatory stimuli, while activating a proinflammatory response through TLRs, upregulate the expression of the NGF receptor TrkA. In turn, NGF, by binding to TrkA, interferes with TLR responses. In TLR-activated monocytes, NGF reduces inflammatory cytokine production (IL-1β, TNF-α, IL-6, and IL-8) while inducing the release of anti-inflammatory mediators (IL-10 and IL-1 receptor antagonist). NGF binding to TrkA affects TLR signaling, favoring pathways that mediate inhibition of inflammatory responses: it increases Akt phosphorylation, inhibits glycogen synthase kinase 3 activity, reduces IκB phosphorylation and p65 NF-κB translocation, and increases nuclear p50 NF-κB binding activity. Use of TrkA inhibitors in TLR-activated monocytes abolishes the effects of NGF on the activation of anti-inflammatory signaling pathways, thus

Nerve growth factor (NGF) levels are highly increased in inflamed tissues, but their role is unclear. We show that NGF is part of a regulatory loop in monocytes: inflammatory stimuli, while activating a proinflammatory response through TLRs, upregulate the expression of the NGF receptor TrkA. In turn, NGF, by binding to TrkA, interferes with TLR responses. In TLR-activated monocytes, NGF reduces inflammatory cytokine production (IL-1β, TNF-α, IL-6, and IL-8) while inducing the release of anti-inflammatory mediators (IL-10 and IL-1 receptor antagonist). NGF binding to TrkA affects TLR signaling, favoring pathways that mediate inhibition of inflammatory responses: it increases Akt phosphorylation, inhibits glycogen synthase kinase 3 activity, reduces IκB phosphorylation and p65 NF-κB translocation, and increases nuclear p50 NF-κB binding activity. Use of TrkA inhibitors in TLR-activated monocytes abolishes the effects of NGF on the activation of anti-inflammatory signaling pathways, thus increasing NF-κB pathway activation and inflammatory cytokine production while reducing IL-10 production. PBMC and mononuclear cells obtained from the synovial fluid of patients with juvenile idiopathic arthritis show marked downregulation of TrkA expression. In ex vivo experiments, the addition of NGF to LPS-activated juvenile idiopathic arthritis to both mononuclear cells from synovial fluid and PBMC fails to reduce the production of IL-6 that, in contrast, is observed in healthy donors. This suggests that defective TrkA expression may facilitate proinflammatory mechanisms, contributing to chronic tissue inflammation and damage. In conclusion, this study identifies a novel regulatory mechanism of inflammatory responses through NGF and its receptor TrkA, for which abnormality may have pathogenic implications for chronic inflammatory diseases.

Nerve Growth Factor Downregulates Inflammatory Response in Human Monocytes through TrkA / G., Prencipe; G., Minnone; Strippoli, Raffaele; L., De Pasquale; S., Petrini; I., Caiello; L., Manni; F., De Benedetti; L., Bracci Laudiero. - In: JOURNAL OF IMMUNOLOGY. - ISSN 0022-1767. - STAMPA. - 192:(2014), pp. 3345-3354. [10.4049/jimmunol.1300825]

Nerve Growth Factor Downregulates Inflammatory Response in Human Monocytes through TrkA

STRIPPOLI, RAFFAELE;
2014

Abstract

Nerve growth factor (NGF) levels are highly increased in inflamed tissues, but their role is unclear. We show that NGF is part of a regulatory loop in monocytes: inflammatory stimuli, while activating a proinflammatory response through TLRs, upregulate the expression of the NGF receptor TrkA. In turn, NGF, by binding to TrkA, interferes with TLR responses. In TLR-activated monocytes, NGF reduces inflammatory cytokine production (IL-1β, TNF-α, IL-6, and IL-8) while inducing the release of anti-inflammatory mediators (IL-10 and IL-1 receptor antagonist). NGF binding to TrkA affects TLR signaling, favoring pathways that mediate inhibition of inflammatory responses: it increases Akt phosphorylation, inhibits glycogen synthase kinase 3 activity, reduces IκB phosphorylation and p65 NF-κB translocation, and increases nuclear p50 NF-κB binding activity. Use of TrkA inhibitors in TLR-activated monocytes abolishes the effects of NGF on the activation of anti-inflammatory signaling pathways, thus
2014
Nerve growth factor (NGF) levels are highly increased in inflamed tissues, but their role is unclear. We show that NGF is part of a regulatory loop in monocytes: inflammatory stimuli, while activating a proinflammatory response through TLRs, upregulate the expression of the NGF receptor TrkA. In turn, NGF, by binding to TrkA, interferes with TLR responses. In TLR-activated monocytes, NGF reduces inflammatory cytokine production (IL-1β, TNF-α, IL-6, and IL-8) while inducing the release of anti-inflammatory mediators (IL-10 and IL-1 receptor antagonist). NGF binding to TrkA affects TLR signaling, favoring pathways that mediate inhibition of inflammatory responses: it increases Akt phosphorylation, inhibits glycogen synthase kinase 3 activity, reduces IκB phosphorylation and p65 NF-κB translocation, and increases nuclear p50 NF-κB binding activity. Use of TrkA inhibitors in TLR-activated monocytes abolishes the effects of NGF on the activation of anti-inflammatory signaling pathways, thus increasing NF-κB pathway activation and inflammatory cytokine production while reducing IL-10 production. PBMC and mononuclear cells obtained from the synovial fluid of patients with juvenile idiopathic arthritis show marked downregulation of TrkA expression. In ex vivo experiments, the addition of NGF to LPS-activated juvenile idiopathic arthritis to both mononuclear cells from synovial fluid and PBMC fails to reduce the production of IL-6 that, in contrast, is observed in healthy donors. This suggests that defective TrkA expression may facilitate proinflammatory mechanisms, contributing to chronic tissue inflammation and damage. In conclusion, this study identifies a novel regulatory mechanism of inflammatory responses through NGF and its receptor TrkA, for which abnormality may have pathogenic implications for chronic inflammatory diseases.
01 Pubblicazione su rivista::01a Articolo in rivista
Nerve Growth Factor Downregulates Inflammatory Response in Human Monocytes through TrkA / G., Prencipe; G., Minnone; Strippoli, Raffaele; L., De Pasquale; S., Petrini; I., Caiello; L., Manni; F., De Benedetti; L., Bracci Laudiero. - In: JOURNAL OF IMMUNOLOGY. - ISSN 0022-1767. - STAMPA. - 192:(2014), pp. 3345-3354. [10.4049/jimmunol.1300825]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/558494
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 45
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 80
social impact