We study the problem of propagation of analytic regularity for semi-linear symmetric hyperbolic systems. We adopt a global perspective and we prove that if the initial datum extends to a holomorphic function in a strip of radius (= width) epsilon(0), the same happens for the solution u(t, .) for a certain radius epsilon(t), as long as the solution exists. Our focus is on precise lower bounds on the spatial radius of analyticity epsilon(t) as t grows. We also get similar results for the Schrodinger equation with a real-analytic electromagnetic potential. (C) 2014 Elsevier Inc. All rights reserved.

On the radius of spatial analyticity for semilinear symmetric hyperbolic systems / D'Ancona, Piero Antonio; F., Nicola; M., Cappiello. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 256:7(2014), pp. 2603-2618. [10.1016/j.jde.2014.01.020]

On the radius of spatial analyticity for semilinear symmetric hyperbolic systems

D'ANCONA, Piero Antonio;
2014

Abstract

We study the problem of propagation of analytic regularity for semi-linear symmetric hyperbolic systems. We adopt a global perspective and we prove that if the initial datum extends to a holomorphic function in a strip of radius (= width) epsilon(0), the same happens for the solution u(t, .) for a certain radius epsilon(t), as long as the solution exists. Our focus is on precise lower bounds on the spatial radius of analyticity epsilon(t) as t grows. We also get similar results for the Schrodinger equation with a real-analytic electromagnetic potential. (C) 2014 Elsevier Inc. All rights reserved.
2014
radius of analyticity; holomorphic extension; analytic regularity hyperbolic systems schrodinger equation; hyperbolic systems
01 Pubblicazione su rivista::01a Articolo in rivista
On the radius of spatial analyticity for semilinear symmetric hyperbolic systems / D'Ancona, Piero Antonio; F., Nicola; M., Cappiello. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 256:7(2014), pp. 2603-2618. [10.1016/j.jde.2014.01.020]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/556648
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact