A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process (K(t ), i(t ),Y (t)) on (T2 ×{1, 2} × ℝ2 ), where T2 is the two-dimensional torus. Here (K(t ), i(t)) is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. Y(t) is an additive functional of K , defined as (Formula presented). ds , where |v| ∼ 1 for small k . We prove that the rescaled process (N lnN) -1/2 Y(Nt) converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to the solution of a diffusion equation.

From a kinetic equation to a diffusion under an anomalous scaling / Basile, Giada. - In: ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES. - ISSN 0246-0203. - STAMPA. - 50:4(2014), pp. 1301-1322. [10.1214/13-AIHP554]

From a kinetic equation to a diffusion under an anomalous scaling

BASILE, GIADA
2014

Abstract

A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process (K(t ), i(t ),Y (t)) on (T2 ×{1, 2} × ℝ2 ), where T2 is the two-dimensional torus. Here (K(t ), i(t)) is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. Y(t) is an additive functional of K , defined as (Formula presented). ds , where |v| ∼ 1 for small k . We prove that the rescaled process (N lnN) -1/2 Y(Nt) converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to the solution of a diffusion equation.
2014
01 Pubblicazione su rivista::01a Articolo in rivista
From a kinetic equation to a diffusion under an anomalous scaling / Basile, Giada. - In: ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES. - ISSN 0246-0203. - STAMPA. - 50:4(2014), pp. 1301-1322. [10.1214/13-AIHP554]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/556524
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact