We are designing a pediatric exoskeletal ankle robot (pediatric Anklebot) to promote gait habilitation in children with Cerebral Palsy (CP). Few studies have evaluated how much or whether the unilateral loading of a wearable exoskeleton may have the unwanted effect of altering significantly the gait. The purpose of this study was to evaluate whether adding masses up to 2.5 kg, the estimated overall added mass of the mentioned device, at the knee level alters the gait kinematics. Ten healthy children and eight children with CP, with light or mild gait impairment, walked wearing a knee brace with several masses. Gait parameters and lower-limb joint kinematics were analyzed with an optoelectronic system under six conditions: without brace (natural gait) and with masses placed at the knee level (0.5, 1.0, 1.5, 2.0, 2.5 kg). T-tests and repeated measures ANOVA tests were conducted in order to find noteworthy differences among the trial conditions and between loaded and unloaded legs. No statistically significant differences in gait parameters for both healthy children and children with CP were observed in the five ‘‘with added mass’’ conditions. We found significant differences among ‘‘natural gait’’ and ‘‘with added masses’’ conditions in knee flexion and hip extension angles for healthy children and in knee flexion angle for children with CP. This result can be interpreted as an effect of the mechanical constraint induced by the knee brace rather than the effect associated with load increase. The study demonstrates that the mechanical constraint induced by the brace has a measurable effect on the gait of healthy children and children with CP and that the added mass up to 2.5 kg does not alter the lower limb kinematics. This suggests that wearable devices weighing 25 N or less will not noticeably modify the gait patterns of the population examined here.

Feasibility study of a wearable exoskeleton for children: is the gait altered by adding masses on lower limbs? / Rossi, Stefano; Alessandra, Colazza; Petrarca, Maurizio; Enrico, Castelli; Cappa, Paolo; Hermano Igo, Krebs. - In: PLOS ONE. - ISSN 1932-6203. - ELETTRONICO. - 8:(2013), pp. 1-9. [10.1371/journal.pone.0073139]

Feasibility study of a wearable exoskeleton for children: is the gait altered by adding masses on lower limbs?

ROSSI, STEFANO;PETRARCA, MAURIZIO;CAPPA, Paolo;
2013

Abstract

We are designing a pediatric exoskeletal ankle robot (pediatric Anklebot) to promote gait habilitation in children with Cerebral Palsy (CP). Few studies have evaluated how much or whether the unilateral loading of a wearable exoskeleton may have the unwanted effect of altering significantly the gait. The purpose of this study was to evaluate whether adding masses up to 2.5 kg, the estimated overall added mass of the mentioned device, at the knee level alters the gait kinematics. Ten healthy children and eight children with CP, with light or mild gait impairment, walked wearing a knee brace with several masses. Gait parameters and lower-limb joint kinematics were analyzed with an optoelectronic system under six conditions: without brace (natural gait) and with masses placed at the knee level (0.5, 1.0, 1.5, 2.0, 2.5 kg). T-tests and repeated measures ANOVA tests were conducted in order to find noteworthy differences among the trial conditions and between loaded and unloaded legs. No statistically significant differences in gait parameters for both healthy children and children with CP were observed in the five ‘‘with added mass’’ conditions. We found significant differences among ‘‘natural gait’’ and ‘‘with added masses’’ conditions in knee flexion and hip extension angles for healthy children and in knee flexion angle for children with CP. This result can be interpreted as an effect of the mechanical constraint induced by the knee brace rather than the effect associated with load increase. The study demonstrates that the mechanical constraint induced by the brace has a measurable effect on the gait of healthy children and children with CP and that the added mass up to 2.5 kg does not alter the lower limb kinematics. This suggests that wearable devices weighing 25 N or less will not noticeably modify the gait patterns of the population examined here.
2013
gait perturbation; exoskeleton
01 Pubblicazione su rivista::01a Articolo in rivista
Feasibility study of a wearable exoskeleton for children: is the gait altered by adding masses on lower limbs? / Rossi, Stefano; Alessandra, Colazza; Petrarca, Maurizio; Enrico, Castelli; Cappa, Paolo; Hermano Igo, Krebs. - In: PLOS ONE. - ISSN 1932-6203. - ELETTRONICO. - 8:(2013), pp. 1-9. [10.1371/journal.pone.0073139]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/555349
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 35
social impact