The study of the low temperature phase of spin glass models by means of Monte Carlo simulations is a challenging task, because of the very slow dynamics and the severe finite-size effects they show. By exploiting at the best the capabilities of standard modern CPUs (especially the streaming single instruction, multiple data extensions), we have been able to simulate the four-dimensional Edwards-Anderson model with Gaussian couplings up to sizes L = 70 and for times long enough to accurately measure the asymptotic behavior. By quenching systems of different sizes to the critical temperature and to temperatures in the whole low temperature phase, we have been able to identify the regime where finite-size effects are negligible: xi(t) less than or similar to L/7. Our estimates for the dynamical exponent (z similar or equal to 1/T) and for the replicon exponent (alpha similar or equal to 1.0 and T independent), that controls the decay of the spatial correlation in the zero overlap sector, are consistent with the replica symmetry breaking theory, but the latter differs from the theoretically conjectured value.

Spatial correlation functions and dynamical exponents in very large samples of four-dimensional spin glasses / Lucas, Nicolao; Parisi, Giorgio; RICCI TERSENGHI, Federico. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 89:3(2014), p. 032127. [10.1103/physreve.89.032127]

Spatial correlation functions and dynamical exponents in very large samples of four-dimensional spin glasses

PARISI, Giorgio;RICCI TERSENGHI, Federico
2014

Abstract

The study of the low temperature phase of spin glass models by means of Monte Carlo simulations is a challenging task, because of the very slow dynamics and the severe finite-size effects they show. By exploiting at the best the capabilities of standard modern CPUs (especially the streaming single instruction, multiple data extensions), we have been able to simulate the four-dimensional Edwards-Anderson model with Gaussian couplings up to sizes L = 70 and for times long enough to accurately measure the asymptotic behavior. By quenching systems of different sizes to the critical temperature and to temperatures in the whole low temperature phase, we have been able to identify the regime where finite-size effects are negligible: xi(t) less than or similar to L/7. Our estimates for the dynamical exponent (z similar or equal to 1/T) and for the replicon exponent (alpha similar or equal to 1.0 and T independent), that controls the decay of the spatial correlation in the zero overlap sector, are consistent with the replica symmetry breaking theory, but the latter differs from the theoretically conjectured value.
2014
01 Pubblicazione su rivista::01a Articolo in rivista
Spatial correlation functions and dynamical exponents in very large samples of four-dimensional spin glasses / Lucas, Nicolao; Parisi, Giorgio; RICCI TERSENGHI, Federico. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 89:3(2014), p. 032127. [10.1103/physreve.89.032127]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/552923
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact