We revisit the diffusion properties and the mean drift induced by an external field of a random walk process in a class of branched structures, as the comb lattice and the linear chains of plaquettes. A simple treatment based on scaling arguments is able to predict the correct anomalous regime for different topologies. In addition, we show that even in the presence of anomalous diffusion, Einstein's relation still holds, implying a proportionality between the mean square displacement of the unperturbed systems and the drift induced by an external forcing. © 2013 IOP Publishing Ltd.

Anomalous diffusion and response in branched systems: a simple analysis / Giuseppe, Forte; Raffaella, Burioni; Fabio, Cecconi; Vulpiani, Angelo. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - STAMPA. - 25:46(2013), p. 465106. [10.1088/0953-8984/25/46/465106]

Anomalous diffusion and response in branched systems: a simple analysis

VULPIANI, Angelo
2013

Abstract

We revisit the diffusion properties and the mean drift induced by an external field of a random walk process in a class of branched structures, as the comb lattice and the linear chains of plaquettes. A simple treatment based on scaling arguments is able to predict the correct anomalous regime for different topologies. In addition, we show that even in the presence of anomalous diffusion, Einstein's relation still holds, implying a proportionality between the mean square displacement of the unperturbed systems and the drift induced by an external forcing. © 2013 IOP Publishing Ltd.
2013
01 Pubblicazione su rivista::01a Articolo in rivista
Anomalous diffusion and response in branched systems: a simple analysis / Giuseppe, Forte; Raffaella, Burioni; Fabio, Cecconi; Vulpiani, Angelo. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - STAMPA. - 25:46(2013), p. 465106. [10.1088/0953-8984/25/46/465106]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/552273
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact