We study the asymptotic behaviour as p -> infinity of the nodal radial solutions u(p) of the problem {-Delta u = vertical bar u vertical bar(p-1)u in Omega u = 0 on partial derivative Omega, where Omega is an annulus in R-N, N >= 2. We also analyze the spectrum of the linearized operator associated to u(p) in the case when u(p) has only two nodal regions. In particular, we prove that the Morse index of u(p) tends to infinity as p goes to infinity.

ASYMPTOTIC BEHAVIOUR OF SIGN CHANGING RADIAL SOLUTIONS OF LANE EMDEN PROBLEMS IN THE ANNULUS / Pacella, Filomena; Dora, Salazar. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 7:4(2014), pp. 793-805. [10.3934/dcdss.2014.7.793]

ASYMPTOTIC BEHAVIOUR OF SIGN CHANGING RADIAL SOLUTIONS OF LANE EMDEN PROBLEMS IN THE ANNULUS

PACELLA, Filomena;
2014

Abstract

We study the asymptotic behaviour as p -> infinity of the nodal radial solutions u(p) of the problem {-Delta u = vertical bar u vertical bar(p-1)u in Omega u = 0 on partial derivative Omega, where Omega is an annulus in R-N, N >= 2. We also analyze the spectrum of the linearized operator associated to u(p) in the case when u(p) has only two nodal regions. In particular, we prove that the Morse index of u(p) tends to infinity as p goes to infinity.
2014
aasymp-totic behaviour; asymptotic behaviour; annular domains; sign changing solutions; radial solutions; superlinear elliptic boundary value problems
01 Pubblicazione su rivista::01a Articolo in rivista
ASYMPTOTIC BEHAVIOUR OF SIGN CHANGING RADIAL SOLUTIONS OF LANE EMDEN PROBLEMS IN THE ANNULUS / Pacella, Filomena; Dora, Salazar. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 7:4(2014), pp. 793-805. [10.3934/dcdss.2014.7.793]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/550684
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact