The laboratory models of the human heart left ventricle developed in the last decades gave a valuable contribution to the comprehension of the role of the fluid dynamics in the cardiac function and to support the interpretation of the data obtained in vivo. Nevertheless, some questions are still opened and new ones stem from the continuous improvements in the diagnostic imaging techniques. Many of these unresolved issues are related to the three-dimensional structure of the left ventricular flow during the cardiac cycle. In this paper, we investigated in detail this aspect using a laboratory model. The ventricle was simulated by a flexible sack varying its volume in time according to a physiologically shaped law. Velocities measured during several cycles on series of parallel planes, taken from two orthogonal points of view, were combined together in order to reconstruct the phase-averaged, three-dimensional velocity field. During the diastole, three main steps are recognized in the evolution of the vortical structures: (1) straight propagation in the direction of the long axis of a vortex ring originated from the mitral orifice; (2) asymmetric development of the vortex ring on an inclined plane; and (3) single vortex formation. The analysis of three-dimensional data gives the experimental evidence of the reorganization of the flow in a single vortex persisting until the end of the diastole. This flow pattern seems to optimize the cardiac function since it directs velocity towards the aortic valve just before the systole and minimizes the fraction of blood residing within the ventricle for more cycles.
Three-dimensional structure of the flow inside the left ventricle of the human heart / Fortini, Stefania; Querzoli, Giorgio; Espa, Stefania; Cenedese, Antonio. - In: EXPERIMENTS IN FLUIDS. - ISSN 0723-4864. - STAMPA. - 54:11(2013), pp. 1-9. [10.1007/s00348-013-1609-0]
Three-dimensional structure of the flow inside the left ventricle of the human heart
FORTINI, STEFANIA;ESPA, Stefania;CENEDESE, Antonio
2013
Abstract
The laboratory models of the human heart left ventricle developed in the last decades gave a valuable contribution to the comprehension of the role of the fluid dynamics in the cardiac function and to support the interpretation of the data obtained in vivo. Nevertheless, some questions are still opened and new ones stem from the continuous improvements in the diagnostic imaging techniques. Many of these unresolved issues are related to the three-dimensional structure of the left ventricular flow during the cardiac cycle. In this paper, we investigated in detail this aspect using a laboratory model. The ventricle was simulated by a flexible sack varying its volume in time according to a physiologically shaped law. Velocities measured during several cycles on series of parallel planes, taken from two orthogonal points of view, were combined together in order to reconstruct the phase-averaged, three-dimensional velocity field. During the diastole, three main steps are recognized in the evolution of the vortical structures: (1) straight propagation in the direction of the long axis of a vortex ring originated from the mitral orifice; (2) asymmetric development of the vortex ring on an inclined plane; and (3) single vortex formation. The analysis of three-dimensional data gives the experimental evidence of the reorganization of the flow in a single vortex persisting until the end of the diastole. This flow pattern seems to optimize the cardiac function since it directs velocity towards the aortic valve just before the systole and minimizes the fraction of blood residing within the ventricle for more cycles.File | Dimensione | Formato | |
---|---|---|---|
Fortini_Three-dimensional-structure_2013.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
886.35 kB
Formato
Adobe PDF
|
886.35 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.