We present a new algorithm for the solution of Generalized Nash Equilibrium Problems. This hybrid method combines the robustness of a potential reduction algorithm and the local quadratic convergence rate of the LP-Newton method. We base our local convergence theory on a local error bound and provide a new sufficient condition for it to hold that is weaker than known ones. In particular, this condition implies neither local uniqueness of a solution nor strict complementarity. We also report promising numerical results. © 2013 Springer Science+Business Media New York.

A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application / Dreves, Axel; Facchinei, Francisco; Fischer, Andreas; Herrich, Markus. - In: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS. - ISSN 0926-6003. - STAMPA. - 59:(2013), pp. 1-22. [10.1007/s10589-013-9586-z]

A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application

FACCHINEI, Francisco;
2013

Abstract

We present a new algorithm for the solution of Generalized Nash Equilibrium Problems. This hybrid method combines the robustness of a potential reduction algorithm and the local quadratic convergence rate of the LP-Newton method. We base our local convergence theory on a local error bound and provide a new sufficient condition for it to hold that is weaker than known ones. In particular, this condition implies neither local uniqueness of a solution nor strict complementarity. We also report promising numerical results. © 2013 Springer Science+Business Media New York.
2013
generalized nash equilibrium problem; generalized nash equilibrium problem ·; global convergence; local error bound condition; local quadratic convergence; lp-newton method; potential reduction algorithm; · local quadratic convergence ·
01 Pubblicazione su rivista::01a Articolo in rivista
A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application / Dreves, Axel; Facchinei, Francisco; Fischer, Andreas; Herrich, Markus. - In: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS. - ISSN 0926-6003. - STAMPA. - 59:(2013), pp. 1-22. [10.1007/s10589-013-9586-z]
File allegati a questo prodotto
File Dimensione Formato  
VE_2013_11573-540455.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 717.86 kB
Formato Adobe PDF
717.86 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/540455
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 27
social impact