It is now becoming largely accepted that the non-coding portion of the genome, rather than its coding counterpart, is likely to account for the greater complexity of higher eukaryotes. Moreover, non-coding RNAs have been demonstrated to participate in regulatory circuitries that are crucial for development and differentiation. Whereas the biogenesis and function of small non-coding RNAs, particularly miRNAs (microRNAs), has been extensively clarified in many eukaryotic systems, very little is known about the long non-coding counterpart of the transcriptome. In the present review, we revise the current knowledge of how small non-coding RNAs and lncRNAs (long non-coding RNAs) impinge on circuitries controlling proper muscle differentiation and homoeostasis and how their biogenesis is regulated. Moreover, we provide new insights into an additional mechanism of post-transcriptional regulation mediated by lncRNAs, which, acting as miRNA 'sponges', have an impact on the distribution of miRNA

It is now becoming largely accepted that the non-coding portion of the genome, rather than its coding counterpart, is likely to account for the greater complexity of higher eukaryotes. Moreover, non-coding RNAs have been demonstrated to participate in regulatory circuitries that are crucial for development and differentiation. Whereas the biogenesis and function of small non-coding RNAs, particularly miRNAs (microRNAs), has been extensively clarified in many eukaryotic systems, very little is known about the long non-coding counterpart of the transcriptome. In the present review, we revise the current knowledge of how small non-coding RNAs and IncRNAs (long non-coding RNAs) impinge on circuitries controlling proper muscle differentiation and homoeostasis and how their biogenesis is regulated. Moreover, we provide new insights into an additional mechanism of post-transcriptional regulation mediated by IncRNAs, which, acting as miRNA 'sponges', have an impact on the distribution of miRNA molecules on their targets with features similar to those described for ceRNAs (competing endogenous RNAs).

Biogenesis and function of non-coding RNAs in muscle differentiation and in Duchenne muscular dystrophy / Twayana, SHYAM SUNDAR; Legnini, Ivano; Cesana, Marcella; Cacchiarelli, Davide; Morlando, Mariangela; Bozzoni, Irene. - In: BIOCHEMICAL SOCIETY TRANSACTIONS. - ISSN 0300-5127. - STAMPA. - 41:4(2013), pp. 844-849. [10.1042/bst20120353]

Biogenesis and function of non-coding RNAs in muscle differentiation and in Duchenne muscular dystrophy

TWAYANA, SHYAM SUNDAR;LEGNINI, IVANO;CESANA, MARCELLA;CACCHIARELLI, DAVIDE;MORLANDO, MARIANGELA;BOZZONI, Irene
2013

Abstract

It is now becoming largely accepted that the non-coding portion of the genome, rather than its coding counterpart, is likely to account for the greater complexity of higher eukaryotes. Moreover, non-coding RNAs have been demonstrated to participate in regulatory circuitries that are crucial for development and differentiation. Whereas the biogenesis and function of small non-coding RNAs, particularly miRNAs (microRNAs), has been extensively clarified in many eukaryotic systems, very little is known about the long non-coding counterpart of the transcriptome. In the present review, we revise the current knowledge of how small non-coding RNAs and lncRNAs (long non-coding RNAs) impinge on circuitries controlling proper muscle differentiation and homoeostasis and how their biogenesis is regulated. Moreover, we provide new insights into an additional mechanism of post-transcriptional regulation mediated by lncRNAs, which, acting as miRNA 'sponges', have an impact on the distribution of miRNA
2013
It is now becoming largely accepted that the non-coding portion of the genome, rather than its coding counterpart, is likely to account for the greater complexity of higher eukaryotes. Moreover, non-coding RNAs have been demonstrated to participate in regulatory circuitries that are crucial for development and differentiation. Whereas the biogenesis and function of small non-coding RNAs, particularly miRNAs (microRNAs), has been extensively clarified in many eukaryotic systems, very little is known about the long non-coding counterpart of the transcriptome. In the present review, we revise the current knowledge of how small non-coding RNAs and IncRNAs (long non-coding RNAs) impinge on circuitries controlling proper muscle differentiation and homoeostasis and how their biogenesis is regulated. Moreover, we provide new insights into an additional mechanism of post-transcriptional regulation mediated by IncRNAs, which, acting as miRNA 'sponges', have an impact on the distribution of miRNA molecules on their targets with features similar to those described for ceRNAs (competing endogenous RNAs).
duchenne muscular dystrophy; long non coding rna; long non-coding rna (incrna); long non-coding rna (lncrna); microrna; microrna (mirna); muscle differentiation
01 Pubblicazione su rivista::01a Articolo in rivista
Biogenesis and function of non-coding RNAs in muscle differentiation and in Duchenne muscular dystrophy / Twayana, SHYAM SUNDAR; Legnini, Ivano; Cesana, Marcella; Cacchiarelli, Davide; Morlando, Mariangela; Bozzoni, Irene. - In: BIOCHEMICAL SOCIETY TRANSACTIONS. - ISSN 0300-5127. - STAMPA. - 41:4(2013), pp. 844-849. [10.1042/bst20120353]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/540238
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 33
social impact