Let F be a field of characteristic different from 2 and G a group. Under the classical involution on the group ring FG, we show that if FG is modular, then the group of unitary units of FG is nilpotent if and only if the entire unit group is nilpotent. We also demonstrate that this does not necessarily hold if FG is not modular, but it is still true if F is algebraically closed.

Group rings whose unitary units are nilpotent / Gregory T., Lee; Sudarshan K., Sehgal; Spinelli, Ernesto. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - STAMPA. - 410(2014), pp. 343-354. [10.1016/j.jalgebra.2014.01.041]

Group rings whose unitary units are nilpotent

SPINELLI, ERNESTO
2014

Abstract

Let F be a field of characteristic different from 2 and G a group. Under the classical involution on the group ring FG, we show that if FG is modular, then the group of unitary units of FG is nilpotent if and only if the entire unit group is nilpotent. We also demonstrate that this does not necessarily hold if FG is not modular, but it is still true if F is algebraically closed.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/539959
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact