A distinctive feature of intelligent systems is their capability to analyze their level of expertise for a given task; in other words, they know what they know. As a way towards this ambitious goal, this paper presents a recognition algorithm able to measure its own level of confidence and, in case of uncertainty, to seek for extra information so to increase its own knowledge and ultimately achieve better performance. We focus on the visual place recognition problem for topological localization, and we take an SVM approach. We propose a new method for measuring the confidence level of the classification output, based on the distance of a test image and the average distance of training vectors. This method is combined with a discriminative accumulation scheme for cue integration. We show with extensive experiments that the resulting algorithm achieves better performances for two visual cues than the classic single cue SVM on the same task, while minimising the computational load. More important, our method provides a reliable measure of the level of confidence of the decision. ©2007 IEEE.

Confidence-based cue integration for visual place recognition / Pronobis, A.; Caputo, Barbara. - STAMPA. - (2007), pp. 2394-2401. (Intervento presentato al convegno IEEE/RSJ International Conference on Intelligent Robots and Systems tenutosi a San Diego, CA; USA nel 29 October - 02 November 2007) [10.1109/IROS.2007.4399493].

Confidence-based cue integration for visual place recognition

CAPUTO, BARBARA
2007

Abstract

A distinctive feature of intelligent systems is their capability to analyze their level of expertise for a given task; in other words, they know what they know. As a way towards this ambitious goal, this paper presents a recognition algorithm able to measure its own level of confidence and, in case of uncertainty, to seek for extra information so to increase its own knowledge and ultimately achieve better performance. We focus on the visual place recognition problem for topological localization, and we take an SVM approach. We propose a new method for measuring the confidence level of the classification output, based on the distance of a test image and the average distance of training vectors. This method is combined with a discriminative accumulation scheme for cue integration. We show with extensive experiments that the resulting algorithm achieves better performances for two visual cues than the classic single cue SVM on the same task, while minimising the computational load. More important, our method provides a reliable measure of the level of confidence of the decision. ©2007 IEEE.
2007
IEEE/RSJ International Conference on Intelligent Robots and Systems
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Confidence-based cue integration for visual place recognition / Pronobis, A.; Caputo, Barbara. - STAMPA. - (2007), pp. 2394-2401. (Intervento presentato al convegno IEEE/RSJ International Conference on Intelligent Robots and Systems tenutosi a San Diego, CA; USA nel 29 October - 02 November 2007) [10.1109/IROS.2007.4399493].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/536420
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 0
social impact