In this brief review we point out the specificities of the vitamin D system that are necessary to understand why each change in the molecule can result in significantly different biologic effects. Vitamin D, with a specific receptor in most of the tissues, has innumerable potential therapeutic applications in many clinical fields. However, excessive pharmacologic increments of circulating natural metabolites carry the risk of significant side effects. To avoid this, natural vitamin D molecules have been modified to more selectively stimulate some tissues. Changes have been attempted on particular parts of the molecule in order to affect some specific step of the complex machinery that characterize the vitamin D system. The first modifications were those in the side chain of the molecule, which are expected to affect, either or both, the steps of binding to transfer protein or the interaction with catabolic enzymes. More recently other regions, like A-ring (involved with receptor interaction) or CD bicyclic ring (involved with molecule stability), have been modified to obtain always more selective products. Notably each modification of the molecule also affects its shape thus further and variably modifying its interaction with the VDR, with the transport proteins or the catabolic enzymes. As a consequence, the biologic effects of new molecules become less predictable and require in vitro evaluation, experimental animal studies and a complete and specific clinical validation in specific disease states. With thousands of analogs synthesized in the laboratories, only a minority are approved for clinical employment. Besides secondary hyperparathyroidism and osteoporosis, Vitamin D analogs can be employed in other clinical conditions like cancer and autoimmunity diseases. We briefly report on some new experimental or already approved analogs in their main clinical fields of employment.

Further vitamin D analogs / Pasquali, M; Tartaglione, Lida; Rotondi, Silverio; Mazzaferro, Sandro; Leonangeli, Cristiana. - In: CURRENT VASCULAR PHARMACOLOGY. - ISSN 1570-1611. - STAMPA. - 12:2(2013), p. 329-38.

Further vitamin D analogs

TARTAGLIONE, LIDA;ROTONDI, SILVERIO;MAZZAFERRO, SANDRO;LEONANGELI, CRISTIANA
2013

Abstract

In this brief review we point out the specificities of the vitamin D system that are necessary to understand why each change in the molecule can result in significantly different biologic effects. Vitamin D, with a specific receptor in most of the tissues, has innumerable potential therapeutic applications in many clinical fields. However, excessive pharmacologic increments of circulating natural metabolites carry the risk of significant side effects. To avoid this, natural vitamin D molecules have been modified to more selectively stimulate some tissues. Changes have been attempted on particular parts of the molecule in order to affect some specific step of the complex machinery that characterize the vitamin D system. The first modifications were those in the side chain of the molecule, which are expected to affect, either or both, the steps of binding to transfer protein or the interaction with catabolic enzymes. More recently other regions, like A-ring (involved with receptor interaction) or CD bicyclic ring (involved with molecule stability), have been modified to obtain always more selective products. Notably each modification of the molecule also affects its shape thus further and variably modifying its interaction with the VDR, with the transport proteins or the catabolic enzymes. As a consequence, the biologic effects of new molecules become less predictable and require in vitro evaluation, experimental animal studies and a complete and specific clinical validation in specific disease states. With thousands of analogs synthesized in the laboratories, only a minority are approved for clinical employment. Besides secondary hyperparathyroidism and osteoporosis, Vitamin D analogs can be employed in other clinical conditions like cancer and autoimmunity diseases. We briefly report on some new experimental or already approved analogs in their main clinical fields of employment.
2013
Animals; Bone Density; Humans; Hyperparathyroidism, Secondary; Osteoporosis; Structure-Activity Relationship; Vitamin D
01 Pubblicazione su rivista::01a Articolo in rivista
Further vitamin D analogs / Pasquali, M; Tartaglione, Lida; Rotondi, Silverio; Mazzaferro, Sandro; Leonangeli, Cristiana. - In: CURRENT VASCULAR PHARMACOLOGY. - ISSN 1570-1611. - STAMPA. - 12:2(2013), p. 329-38.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/529675
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact