In the case of large-scale surveys, such as a Census, data may contain errors or missing values. An automatic error correction procedure is therefore needed. We focus on the problem of restoring the consistency of agricultural data concerning cultivation areas and number of livestock, and we propose here an approach to this balancing problem based on optimization. Possible alternative models, either linear, quadratic or mixed integer, are presented. The mixed integer linear one has been preferred and used for the treatment of possibly unbalanced data records. Results on real-world Agricultural Census data show the effectiveness of the proposed approach.

Balancing of agricultural census data by using discrete optimization / Gianpiero, Bianchi; Bruni, Renato; Alessandra, Reale. - In: OPTIMIZATION LETTERS. - ISSN 1862-4472. - STAMPA. - 8:4(2014), pp. 1553-1565. [10.1007/s11590-013-0652-3]

Balancing of agricultural census data by using discrete optimization

BRUNI, Renato
;
2014

Abstract

In the case of large-scale surveys, such as a Census, data may contain errors or missing values. An automatic error correction procedure is therefore needed. We focus on the problem of restoring the consistency of agricultural data concerning cultivation areas and number of livestock, and we propose here an approach to this balancing problem based on optimization. Possible alternative models, either linear, quadratic or mixed integer, are presented. The mixed integer linear one has been preferred and used for the treatment of possibly unbalanced data records. Results on real-world Agricultural Census data show the effectiveness of the proposed approach.
2014
mixed integer linear models; data mining; balancing problems; mixed integer optimization; information reconstruction
01 Pubblicazione su rivista::01a Articolo in rivista
Balancing of agricultural census data by using discrete optimization / Gianpiero, Bianchi; Bruni, Renato; Alessandra, Reale. - In: OPTIMIZATION LETTERS. - ISSN 1862-4472. - STAMPA. - 8:4(2014), pp. 1553-1565. [10.1007/s11590-013-0652-3]
File allegati a questo prodotto
File Dimensione Formato  
VE_2014_11573-526264.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 153.31 kB
Formato Adobe PDF
153.31 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/526264
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact