The main goal of Tissue Engineering is to create biological substitutes aimed at restoring or replacing damaged tissues or organs. The research on the manufacture of scaffolds for tissue engineering applications has taken in recent years a definite direction. Those fabrication techniques (e.g. rapid prototyping) that allow exerting, according to a priori design, a high degree of control over the scaffold morphological features are becoming privileged with respect to traditional ones. The reason of this trend is that scaffolds with a uniform and customized porous texture guarantee an equal probability of colonization from seeded cells, an uniform degradation rates through space and the matching of pores and interconnects to cell dimension. A new method of production of highly uniform and ordered scaffolds rely on the formation of an emulsion or a gas-in-liquid foam inside a microfluidic device. The generation of droplets or bubbles inside the micro channels of a microfluidic chip takes place in a constant and extremely reproducible way. These discrete, monodisperse elements act as the templates of the porous structure that develops when the continuous phase is cured by either physical or chemical means. The main advantages offered by such an approach are: i) high reproducibility of the experiments, ii) a wide variety of monomers and biopolymers can be used as the scaffold constituents, iii) possibility to tune within wide ranges, both the dimensions of scaffold pores through the dimension of the precursor bubbles or droplets and, the scaffold porosity through the percentage of the dispersed phase.

MICROFLUIDICS: A POWERFUL TOOL FOR THE FABRICATION OF TAILORED SCAFFOLDS / Barbetta, Andrea; Costantini, Marco; Colosi, Cristina; Dentini, Mariella. - In: JOURNAL OF TISSUE SCIENCE & ENGINEERING. - ISSN 2157-7552. - STAMPA. - (2013), pp. 60-60. (Intervento presentato al convegno 2nd International Conference on Tissue Science and Rigenerative Medicine tenutosi a Raleigh, NC, USA nel 26-28 Agosto).

MICROFLUIDICS: A POWERFUL TOOL FOR THE FABRICATION OF TAILORED SCAFFOLDS

BARBETTA, ANDREA;COSTANTINI, MARCO;COLOSI, CRISTINA;DENTINI, Mariella
2013

Abstract

The main goal of Tissue Engineering is to create biological substitutes aimed at restoring or replacing damaged tissues or organs. The research on the manufacture of scaffolds for tissue engineering applications has taken in recent years a definite direction. Those fabrication techniques (e.g. rapid prototyping) that allow exerting, according to a priori design, a high degree of control over the scaffold morphological features are becoming privileged with respect to traditional ones. The reason of this trend is that scaffolds with a uniform and customized porous texture guarantee an equal probability of colonization from seeded cells, an uniform degradation rates through space and the matching of pores and interconnects to cell dimension. A new method of production of highly uniform and ordered scaffolds rely on the formation of an emulsion or a gas-in-liquid foam inside a microfluidic device. The generation of droplets or bubbles inside the micro channels of a microfluidic chip takes place in a constant and extremely reproducible way. These discrete, monodisperse elements act as the templates of the porous structure that develops when the continuous phase is cured by either physical or chemical means. The main advantages offered by such an approach are: i) high reproducibility of the experiments, ii) a wide variety of monomers and biopolymers can be used as the scaffold constituents, iii) possibility to tune within wide ranges, both the dimensions of scaffold pores through the dimension of the precursor bubbles or droplets and, the scaffold porosity through the percentage of the dispersed phase.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/523603
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact