The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H2 production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H2 production compared to that in FW only, reaching H2-production yields of 145 and 109mlgVS0-1, respectively, which are 1.5-2times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H2 production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process. © 2013 Elsevier Ltd.

The influence of slaughterhouse waste on fermentative H2 production from food waste: Preliminary results / Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia. - In: WASTE MANAGEMENT. - ISSN 0956-053X. - 33:6(2013), pp. 1362-1371. [10.1016/j.wasman.2013.02.024]

The influence of slaughterhouse waste on fermentative H2 production from food waste: Preliminary results

BONI, Maria Rosaria;SBAFFONI, Silvia;TUCCINARDI, LETIZIA
2013

Abstract

The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H2 production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H2 production compared to that in FW only, reaching H2-production yields of 145 and 109mlgVS0-1, respectively, which are 1.5-2times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H2 production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process. © 2013 Elsevier Ltd.
2013
food waste; co-digestion process; biohydrogen; slaughterhouse waste
01 Pubblicazione su rivista::01a Articolo in rivista
The influence of slaughterhouse waste on fermentative H2 production from food waste: Preliminary results / Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia. - In: WASTE MANAGEMENT. - ISSN 0956-053X. - 33:6(2013), pp. 1362-1371. [10.1016/j.wasman.2013.02.024]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/523467
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact