Research on Graph-based pattern recognition and Soft Computing systems has attracted many scientists and engineers in several different contexts. This fact is motivated by the reason that graphs are general structures able to encode both topological and semantic information in data. While the data modeling properties of graphs are of indisputable power, there are still different concerns about the best way to compute similarity functions in an effective and efficient manner. To this end, suited transformation procedures are usually conceived to address the well-known Inexact Graph Matching problem in an explicit embedding space. In this paper, we propose two graph embedding algorithms based on the Granular Computing paradigm, which are engineered as key procedures of a general-purpose graph classification system. Tests have been conducted on benchmarking datasets relying on both synthetic and real-world data, achieving competitive results in terms of test set classification accuracy.

Research on Graph-based pattern recognition and Soft Computing systems has attracted many scientists and engineers in several different contexts. This fact is motivated by the reason that graphs are general structures able to encode both topological and semantic information in data. While the data modeling properties of graphs are of indisputable power, there are still different concerns about the best way to compute similarity functions in an effective and efficient manner. To this end, suited transformation procedures are usually conceived to address the well-known Inexact Graph Matching problem in an explicit embedding space. In this paper, we propose two graph embedding algorithms based on the Granular Computing paradigm, which are engineered as key procedures of a general-purpose graph classification system. Tests have been conducted on benchmarking datasets relying on both synthetic and real-world data, achieving competitive results in terms of test set classification accuracy.

A Granular Computing approach to the design of optimized graph classification systems / Bianchi, FILIPPO MARIA; Livi, Lorenzo; Rizzi, Antonello; Alireza, Sadeghian. - In: SOFT COMPUTING. - ISSN 1432-7643. - STAMPA. - 18:2(2014), pp. 393-412. [10.1007/s00500-013-1065-z]

A Granular Computing approach to the design of optimized graph classification systems

BIANCHI, FILIPPO MARIA;LIVI, LORENZO;RIZZI, Antonello;
2014

Abstract

Research on Graph-based pattern recognition and Soft Computing systems has attracted many scientists and engineers in several different contexts. This fact is motivated by the reason that graphs are general structures able to encode both topological and semantic information in data. While the data modeling properties of graphs are of indisputable power, there are still different concerns about the best way to compute similarity functions in an effective and efficient manner. To this end, suited transformation procedures are usually conceived to address the well-known Inexact Graph Matching problem in an explicit embedding space. In this paper, we propose two graph embedding algorithms based on the Granular Computing paradigm, which are engineered as key procedures of a general-purpose graph classification system. Tests have been conducted on benchmarking datasets relying on both synthetic and real-world data, achieving competitive results in terms of test set classification accuracy.
2014
Research on Graph-based pattern recognition and Soft Computing systems has attracted many scientists and engineers in several different contexts. This fact is motivated by the reason that graphs are general structures able to encode both topological and semantic information in data. While the data modeling properties of graphs are of indisputable power, there are still different concerns about the best way to compute similarity functions in an effective and efficient manner. To this end, suited transformation procedures are usually conceived to address the well-known Inexact Graph Matching problem in an explicit embedding space. In this paper, we propose two graph embedding algorithms based on the Granular Computing paradigm, which are engineered as key procedures of a general-purpose graph classification system. Tests have been conducted on benchmarking datasets relying on both synthetic and real-world data, achieving competitive results in terms of test set classification accuracy.
granular modeling; inexact graph matching; graph-based pattern recognition; granular computing; graph embedding
01 Pubblicazione su rivista::01a Articolo in rivista
A Granular Computing approach to the design of optimized graph classification systems / Bianchi, FILIPPO MARIA; Livi, Lorenzo; Rizzi, Antonello; Alireza, Sadeghian. - In: SOFT COMPUTING. - ISSN 1432-7643. - STAMPA. - 18:2(2014), pp. 393-412. [10.1007/s00500-013-1065-z]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/522797
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 39
social impact