We consider a two-body quantum system in dimension one composed by a test particle interacting with a harmonic oscillator placed at the position a > 0. At time zero the test particle is concentrated around the position R(0) with average velocity+/-v(0) while the oscillator is in its ground state. In a suitable scaling limit, corresponding for the test particle to a semiclassical regime with small energy exchange with the oscillator, we give a complete asymptotic expansion of the wave function of the system in both cases R(0) < a and R(0) > a. (C) 2011 American Institute of Physics. [doi:10.1063/1.3549587]

Asymptotic expansion for the wave function in a one-dimensional model of inelastic interaction / Domenico, Finco; Teta, Alessandro. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - STAMPA. - 52:2(2011), pp. 022103-022103-19. [10.1063/1.3549587]

Asymptotic expansion for the wave function in a one-dimensional model of inelastic interaction

TETA, Alessandro
2011

Abstract

We consider a two-body quantum system in dimension one composed by a test particle interacting with a harmonic oscillator placed at the position a > 0. At time zero the test particle is concentrated around the position R(0) with average velocity+/-v(0) while the oscillator is in its ground state. In a suitable scaling limit, corresponding for the test particle to a semiclassical regime with small energy exchange with the oscillator, we give a complete asymptotic expansion of the wave function of the system in both cases R(0) < a and R(0) > a. (C) 2011 American Institute of Physics. [doi:10.1063/1.3549587]
2011
asymptotic expansion; schroedinger equation; harmonic oscillator
01 Pubblicazione su rivista::01a Articolo in rivista
Asymptotic expansion for the wave function in a one-dimensional model of inelastic interaction / Domenico, Finco; Teta, Alessandro. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - STAMPA. - 52:2(2011), pp. 022103-022103-19. [10.1063/1.3549587]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/518345
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact