In the present paper we study high-order cubature formulas for the computation of advection-diffusion potentials over boxes. By using the basis functions introduced in the theory of approximate approximations, the cubature of a potential is reduced to the quadrature of one-dimensional integrals. For densities with separated approximation, we derive a tensor product representation of the integral operator which admits efficient cubature procedures in very high dimensions. Numerical tests show that these formulas are accurate and provide approximation of order O(h6) up to dimension 108. © 2013 Elsevier Inc.

Fast cubature of volume potentials over rectangular domains by approximate approximations / Lanzara, Flavia; V., Mazya; G., Schmidt. - In: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS. - ISSN 1063-5203. - STAMPA. - 36:1(2014), pp. 167-182. [10.1016/j.acha.2013.06.003]

Fast cubature of volume potentials over rectangular domains by approximate approximations

LANZARA, Flavia;
2014

Abstract

In the present paper we study high-order cubature formulas for the computation of advection-diffusion potentials over boxes. By using the basis functions introduced in the theory of approximate approximations, the cubature of a potential is reduced to the quadrature of one-dimensional integrals. For densities with separated approximation, we derive a tensor product representation of the integral operator which admits efficient cubature procedures in very high dimensions. Numerical tests show that these formulas are accurate and provide approximation of order O(h6) up to dimension 108. © 2013 Elsevier Inc.
2014
advection-diffusion potential; higher dimensions; separated representation; multi-dimensional convolution
01 Pubblicazione su rivista::01a Articolo in rivista
Fast cubature of volume potentials over rectangular domains by approximate approximations / Lanzara, Flavia; V., Mazya; G., Schmidt. - In: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS. - ISSN 1063-5203. - STAMPA. - 36:1(2014), pp. 167-182. [10.1016/j.acha.2013.06.003]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/517210
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 8
social impact