Projection in the situation calculus refers to answering queries about the future evolutions of the modeled domain, while progression refers to updating the logical representation of the initial state so that it reflects the changes due to an executed action. In the general case projection is not decidable and progression may require second-order logic. In this paper we focus on a recent result about the decidability of projection and use it to drive results for the problem of progression. In particular we contribute with the following: (i) a major result showing that for a large class of intuitive action theories with bounded unknowns a first-order progression always exists and can be computed; (ii) a comprehensive classification of the known classes that can be progressed in first-order; (iii) a novel account of nondeterministic actions in the situation calculus.

A classification of first-order progressable action theories in situation calculus / Vassos, Stavros; Patrizi, Fabio. - In: IJCAI. - ISSN 1045-0823. - ELETTRONICO. - (2013), pp. 1132-1138. (Intervento presentato al convegno 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013 tenutosi a Beijing; China nel 3 August 2013 through 9 August 2013).

A classification of first-order progressable action theories in situation calculus

VASSOS, STAVROS;PATRIZI, FABIO
2013

Abstract

Projection in the situation calculus refers to answering queries about the future evolutions of the modeled domain, while progression refers to updating the logical representation of the initial state so that it reflects the changes due to an executed action. In the general case projection is not decidable and progression may require second-order logic. In this paper we focus on a recent result about the decidability of projection and use it to drive results for the problem of progression. In particular we contribute with the following: (i) a major result showing that for a large class of intuitive action theories with bounded unknowns a first-order progression always exists and can be computed; (ii) a comprehensive classification of the known classes that can be progressed in first-order; (iii) a novel account of nondeterministic actions in the situation calculus.
2013
23rd International Joint Conference on Artificial Intelligence, IJCAI 2013
Action theory; Answering queries; First-order
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A classification of first-order progressable action theories in situation calculus / Vassos, Stavros; Patrizi, Fabio. - In: IJCAI. - ISSN 1045-0823. - ELETTRONICO. - (2013), pp. 1132-1138. (Intervento presentato al convegno 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013 tenutosi a Beijing; China nel 3 August 2013 through 9 August 2013).
File allegati a questo prodotto
File Dimensione Formato  
VE_2013_11573-516151.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/516151
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact