Recently, scientific interest in electric pulses, always more intense and shorter and able to induce biological effects on both plasma and nuclear membranes, has greatly increased. Hence, microdosimetric models that include internal organelles like the nucleus have assumed increasing importance. In this work, a circuit model of the cell including the nucleus is proposed, which accounts for the dielectric dispersion of all cell compartments. The setup of the dielectric model of the nucleus is of fundamental importance in determining the transmembrane potential (TMP) induced on the nuclear membrane; here, this is demonstrated by comparing results for three different sets of nuclear dielectric properties present in the literature. The results have been compared, even including or disregarding the dielectric dispersion of the nucleus. The main differences have been found when using pulses shorter than 10 ns. This is due to the fact that the high spectral components of the shortest pulses are differently taken into account by the nuclear membrane transfer functions computed with and without nuclear dielectric dispersion. The shortest pulses are also the most effective in porating the intracellular structures, as confirmed by the time courses of the TMP calculated across the plasma and nuclear membranes. We show how dispersive nucleus models are unavoidable when dealing with pulses shorter than 10 ns because of the large spectral contents arriving above 100 MHz, i.e., over the typical relaxation frequencies of the dipolar mechanism of the molecules constituting the nuclear membrane and the subcellular cell compartments.

Microdosimetric Study for Nanosecond Pulsed Electric Fields on a Cell Circuit Model with Nucleus / Denzi, Agnese; Caterina, Merla; Paola, Camilleri; Paffi, Alessandra; D'Inzeo, Guglielmo; Apollonio, Francesca; Liberti, Micaela. - In: THE JOURNAL OF MEMBRANE BIOLOGY. - ISSN 0022-2631. - 246:10(2013), pp. 761-767. [10.1007/s00232-013-9546-7]

Microdosimetric Study for Nanosecond Pulsed Electric Fields on a Cell Circuit Model with Nucleus

DENZI, AGNESE;PAFFI, ALESSANDRA;D'INZEO, Guglielmo;APOLLONIO, Francesca;LIBERTI, Micaela
2013

Abstract

Recently, scientific interest in electric pulses, always more intense and shorter and able to induce biological effects on both plasma and nuclear membranes, has greatly increased. Hence, microdosimetric models that include internal organelles like the nucleus have assumed increasing importance. In this work, a circuit model of the cell including the nucleus is proposed, which accounts for the dielectric dispersion of all cell compartments. The setup of the dielectric model of the nucleus is of fundamental importance in determining the transmembrane potential (TMP) induced on the nuclear membrane; here, this is demonstrated by comparing results for three different sets of nuclear dielectric properties present in the literature. The results have been compared, even including or disregarding the dielectric dispersion of the nucleus. The main differences have been found when using pulses shorter than 10 ns. This is due to the fact that the high spectral components of the shortest pulses are differently taken into account by the nuclear membrane transfer functions computed with and without nuclear dielectric dispersion. The shortest pulses are also the most effective in porating the intracellular structures, as confirmed by the time courses of the TMP calculated across the plasma and nuclear membranes. We show how dispersive nucleus models are unavoidable when dealing with pulses shorter than 10 ns because of the large spectral contents arriving above 100 MHz, i.e., over the typical relaxation frequencies of the dipolar mechanism of the molecules constituting the nuclear membrane and the subcellular cell compartments.
2013
cell circuit model with nucleus; microdosimetry; nanosecond pulsed electric field
01 Pubblicazione su rivista::01a Articolo in rivista
Microdosimetric Study for Nanosecond Pulsed Electric Fields on a Cell Circuit Model with Nucleus / Denzi, Agnese; Caterina, Merla; Paola, Camilleri; Paffi, Alessandra; D'Inzeo, Guglielmo; Apollonio, Francesca; Liberti, Micaela. - In: THE JOURNAL OF MEMBRANE BIOLOGY. - ISSN 0022-2631. - 246:10(2013), pp. 761-767. [10.1007/s00232-013-9546-7]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/516133
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 36
social impact