In this paper, we consider the equation |delta u|M a, A (D 2 u)= f(u) in a bounded smooth domain , with both Dirichlet condition u=0 and Neumann condition , where c is a constant, > 1, u is of constant sign and M a, A is one of the Pucci operator. We prove, for different nonlinearities f, that, when a is sufficiently close to A, either u=c=0=f(0) or is a ball, u is radial, and c0 in .

Overdetermined Problems for Some Fully Non Linear Operators / Birindelli, Isabella; Francoise, Demengel. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - STAMPA. - 38:4(2013), pp. 608-628. [10.1080/03605302.2012.756521]

Overdetermined Problems for Some Fully Non Linear Operators

BIRINDELLI, Isabella;
2013

Abstract

In this paper, we consider the equation |delta u|M a, A (D 2 u)= f(u) in a bounded smooth domain , with both Dirichlet condition u=0 and Neumann condition , where c is a constant, > 1, u is of constant sign and M a, A is one of the Pucci operator. We prove, for different nonlinearities f, that, when a is sufficiently close to A, either u=c=0=f(0) or is a ball, u is radial, and c0 in .
2013
symmetry of solutions; 35j60; fully non-linear equations; 35j25; overdetermined problems
01 Pubblicazione su rivista::01a Articolo in rivista
Overdetermined Problems for Some Fully Non Linear Operators / Birindelli, Isabella; Francoise, Demengel. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - STAMPA. - 38:4(2013), pp. 608-628. [10.1080/03605302.2012.756521]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/516124
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 11
social impact