For Psi is an element of W-1,W-p (Omega; R-m) and g is an element of W--1,W-p (Omega;R-d), 1 < P < +infinity, we consider a sequence of integral functionals F-k(Psi,g) : W-1,W-p (Omega; R-dxn) -> [0, +infinity] of the form F-k(Psi,g) (u, v) = {integral(Omega) f(k)(x, del u, v) if u - Psi is an element of W-0(1,p) (Omega; R-m) and div upsilon = g, where the integrands f(k) satisfy growth conditions of order p, uniformly in k. We prove a Gamma-compactness result for F-k(Psi,g) with respect to the weak topology of W-1,W-P (Omega; R-m) x L-p (Omega; R-dxn) and we show that under suitable assumptions the integrand of the Gamma-limit is continuously differentiable. We also provide a result concerning the convergence of momenta for minimizers of F-k(Psi,g) (C) 2013 Elsevier Masson SAS. All rights reserved.
New results on Gamma-limits of integral functionals / Ansini, Nadia; G., Dal Maso; C. I., Zeppieri. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - ELETTRONICO. - 31:(2014), pp. 185-202. [10.1016/j.anihpc.2013.02.005]
New results on Gamma-limits of integral functionals
ANSINI, NADIA;
2014
Abstract
For Psi is an element of W-1,W-p (Omega; R-m) and g is an element of W--1,W-p (Omega;R-d), 1 < P < +infinity, we consider a sequence of integral functionals F-k(Psi,g) : W-1,W-p (Omega; R-dxn) -> [0, +infinity] of the form F-k(Psi,g) (u, v) = {integral(Omega) f(k)(x, del u, v) if u - Psi is an element of W-0(1,p) (Omega; R-m) and div upsilon = g, where the integrands f(k) satisfy growth conditions of order p, uniformly in k. We prove a Gamma-compactness result for F-k(Psi,g) with respect to the weak topology of W-1,W-P (Omega; R-m) x L-p (Omega; R-dxn) and we show that under suitable assumptions the integrand of the Gamma-limit is continuously differentiable. We also provide a result concerning the convergence of momenta for minimizers of F-k(Psi,g) (C) 2013 Elsevier Masson SAS. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.