In the context of the compressed sensing problem, we propose a new ensemble of sparse random matrices which allow one (i) to acquire and compress a ρ0-sparse signal of length N in a time linear in N and (ii) to perfectly recover the original signal, compressed at a rate α, by using a message passing algorithm (Expectation Maximization Belief Propagation) that runs in a time linear in N. In the large N limit, the scheme proposed here closely approaches the theoretical bound ρ0 = α, and so it is both optimal and efficient (linear time complexity). More generally, we show that several ensembles of dense random matrices can be converted into ensembles of sparse random matrices, having the same thresholds, but much lower computational complexity. © 2012 IEEE.

Compressed sensing with sparse, structured matrices / ANGELINI, Maria Chiara; RICCI TERSENGHI, Federico; Yoshiyuki, Kabashima. - (2012), pp. 808-814. (Intervento presentato al convegno 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton) tenutosi a Monticello; United States nel OCT 01-05, 2012) [10.1109/allerton.2012.6483301].

Compressed sensing with sparse, structured matrices

ANGELINI, Maria Chiara;RICCI TERSENGHI, Federico;
2012

Abstract

In the context of the compressed sensing problem, we propose a new ensemble of sparse random matrices which allow one (i) to acquire and compress a ρ0-sparse signal of length N in a time linear in N and (ii) to perfectly recover the original signal, compressed at a rate α, by using a message passing algorithm (Expectation Maximization Belief Propagation) that runs in a time linear in N. In the large N limit, the scheme proposed here closely approaches the theoretical bound ρ0 = α, and so it is both optimal and efficient (linear time complexity). More generally, we show that several ensembles of dense random matrices can be converted into ensembles of sparse random matrices, having the same thresholds, but much lower computational complexity. © 2012 IEEE.
2012
50th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
Belief propagation; Compressive sensing; Expectation - maximizations
Pubblicazione in atti di convegno::04b Atto di convegno in volume
Compressed sensing with sparse, structured matrices / ANGELINI, Maria Chiara; RICCI TERSENGHI, Federico; Yoshiyuki, Kabashima. - (2012), pp. 808-814. (Intervento presentato al convegno 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton) tenutosi a Monticello; United States nel OCT 01-05, 2012) [10.1109/allerton.2012.6483301].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/515442
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact