Atrial natriuretic peptide (ANP) plays a pivotal role in modulation of vascular function and it is also involved in the pathophysiology of several cardiovascular diseases. We provide an updated overview of the current appraisal of ANP vascular effects in both animal models and humans. We describe the physiological implications of ANP vasomodulatory properties as well as the involvement of ANP, through its control of vascular function, in hypertension and heart failure. The principal molecular mechanisms underlying regulation of vascular tone, that is natriuretic peptide receptor type A/cyclic guanylate monophosphate, natriuretic peptide receptor type C, nitric oxide system, are discussed. We review the literature on therapeutic implications of ANP in hypertension and heart failure, examining the potential use of ANP analogues, neutral endopeptidase (NEP) inhibitors, ACE/NEP inhibitors, angiotensin receptor blocker (ARB)/NEP inhibitors, the new dual endothelin-converting enzyme (ECE)/NEP inhibitors and ANP-based gene therapy. The data discussed support the role of ANP in different pathological conditions through its vasomodulatory properties. They also indicate that ANP may represent an optimal therapeutic agent in cardiovascular diseases. © 2013 Lippincott Williams & Wilkins.
Atrial natriuretic peptide (ANP) plays a pivotal role in modulation of vascular function and it is also involved in the pathophysiology of several cardiovascular diseases. We provide an updated overview of the current appraisal of ANP vascular effects in both animal models and humans. We describe the physiological implications of ANP vasomodulatory properties as well as the involvement of ANP, through its control of vascular function, in hypertension and heart failure. The principal molecular mechanisms underlying regulation of vascular tone, that is natriuretic peptide receptor type A/cyclic guanylate monophosphate, natriuretic peptide receptor type C, nitric oxide system, are discussed. We review the literature on therapeutic implications of ANP in hypertension and heart failure, examining the potential use of ANP analogues, neutral endopeptidase (NEP) inhibitors, ACE/NEP inhibitors, angiotensin receptor blocker (ARB)/NEP inhibitors, the new dual endothelin-converting enzyme (ECE)/NEP inhibitors and ANP-based gene therapy. The data discussed support the role of ANP in different pathological conditions through its vasomodulatory properties. They also indicate that ANP may represent an optimal therapeutic agent in cardiovascular diseases.
Atrial natriuretic peptide and regulation of vascular function in hypertension and heart failure: implications for novel therapeutic strategies / Rubattu, Speranza Donatella; Calvieri, Camilla; Beniamino, Pagliaro; Volpe, Massimo. - In: JOURNAL OF HYPERTENSION. - ISSN 0263-6352. - 31:6(2013), pp. 1061-1072. [10.1097/hjh.0b013e32835ed5eb]
Atrial natriuretic peptide and regulation of vascular function in hypertension and heart failure: implications for novel therapeutic strategies
RUBATTU, Speranza Donatella;CALVIERI, CAMILLA;VOLPE, Massimo
2013
Abstract
Atrial natriuretic peptide (ANP) plays a pivotal role in modulation of vascular function and it is also involved in the pathophysiology of several cardiovascular diseases. We provide an updated overview of the current appraisal of ANP vascular effects in both animal models and humans. We describe the physiological implications of ANP vasomodulatory properties as well as the involvement of ANP, through its control of vascular function, in hypertension and heart failure. The principal molecular mechanisms underlying regulation of vascular tone, that is natriuretic peptide receptor type A/cyclic guanylate monophosphate, natriuretic peptide receptor type C, nitric oxide system, are discussed. We review the literature on therapeutic implications of ANP in hypertension and heart failure, examining the potential use of ANP analogues, neutral endopeptidase (NEP) inhibitors, ACE/NEP inhibitors, angiotensin receptor blocker (ARB)/NEP inhibitors, the new dual endothelin-converting enzyme (ECE)/NEP inhibitors and ANP-based gene therapy. The data discussed support the role of ANP in different pathological conditions through its vasomodulatory properties. They also indicate that ANP may represent an optimal therapeutic agent in cardiovascular diseases. © 2013 Lippincott Williams & Wilkins.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.