Compared with NMDA receptor-dependent LTP, much less is known about the mechanism of induction of NMDA receptor-independent LTP; the most extensively studied form of which is mossy fiber LTP in the hippocampus. In the present study we show that Ca2+-induced Ca2+ release from intracellular stores is involved in the induction of mossy fiber LTP. This release also contributes to the kainate receptor-dependent component of the pronounced synaptic facilitation that occurs during high-frequency stimulation. We also present evidence that the trigger for this Ca2+ release is Ca2+ permeation through kainate receptors. However, these novel synaptic mechanisms can be bypassed when the Ca2+ concentration is raised (from 2 to 4 mM), via a compensatory involvement of L-type Ca2+ channels. These findings suggest that presynaptic kainate receptors at mossy fiber synapses can initiate a cascade involving Ca2+ release from intracellular stores that is important in both short-term and long-term plasticity.
A role for Ca2+ stores in kainate receptor-dependent synaptic facilitation and LTP at mossy fiber synapses in the hippocampus / S. E., Lauri; Z. A., Bortolotto; Nistico', ROBERT GIOVANNI; D., Bleakman; P. L., Ornstein; D., Lodge; J. T., R; G. L., Collingridge. - In: NEURON. - ISSN 0896-6273. - 39:(2003), pp. 327-341.
A role for Ca2+ stores in kainate receptor-dependent synaptic facilitation and LTP at mossy fiber synapses in the hippocampus.
NISTICO', ROBERT GIOVANNI;
2003
Abstract
Compared with NMDA receptor-dependent LTP, much less is known about the mechanism of induction of NMDA receptor-independent LTP; the most extensively studied form of which is mossy fiber LTP in the hippocampus. In the present study we show that Ca2+-induced Ca2+ release from intracellular stores is involved in the induction of mossy fiber LTP. This release also contributes to the kainate receptor-dependent component of the pronounced synaptic facilitation that occurs during high-frequency stimulation. We also present evidence that the trigger for this Ca2+ release is Ca2+ permeation through kainate receptors. However, these novel synaptic mechanisms can be bypassed when the Ca2+ concentration is raised (from 2 to 4 mM), via a compensatory involvement of L-type Ca2+ channels. These findings suggest that presynaptic kainate receptors at mossy fiber synapses can initiate a cascade involving Ca2+ release from intracellular stores that is important in both short-term and long-term plasticity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.