Recently we determined explicitly a Picard modular variety of general type. On the regular locus of this variety there are holomorphic three forms which have been constructed as Borcherds products. Resolutions of quotients of this variety, such that the zero divisors are in the branch locus, are candidates for Calabi-Yau manifolds. Here we treat one distinguished example for this. In fact we shall recover a known variety given by the equations $ X_0X_1X_2=X_3X_4X_5, \,\, X_0^3+X_1^3+X_2^3=X_3^3+X_4^3+X_5^3. $ as a Picard modular variety. This variety has a projective small resolution which is a rigid Calabi-Yau manifold ($ h^{12}=0$) with Euler number $ 72$.

Some ball quotients with a Calabi--Yau model / E., Freitag; SALVATI MANNI, Riccardo. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 143:8(2015), pp. 3203-3209. [10.1090/S0002-9939-2015-11975-2]

Some ball quotients with a Calabi--Yau model

SALVATI MANNI, Riccardo
2015

Abstract

Recently we determined explicitly a Picard modular variety of general type. On the regular locus of this variety there are holomorphic three forms which have been constructed as Borcherds products. Resolutions of quotients of this variety, such that the zero divisors are in the branch locus, are candidates for Calabi-Yau manifolds. Here we treat one distinguished example for this. In fact we shall recover a known variety given by the equations $ X_0X_1X_2=X_3X_4X_5, \,\, X_0^3+X_1^3+X_2^3=X_3^3+X_4^3+X_5^3. $ as a Picard modular variety. This variety has a projective small resolution which is a rigid Calabi-Yau manifold ($ h^{12}=0$) with Euler number $ 72$.
2015
Calabi-Yau; modular varieties
01 Pubblicazione su rivista::01a Articolo in rivista
Some ball quotients with a Calabi--Yau model / E., Freitag; SALVATI MANNI, Riccardo. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 143:8(2015), pp. 3203-3209. [10.1090/S0002-9939-2015-11975-2]
File allegati a questo prodotto
File Dimensione Formato  
Freitag_Some-ball_2015.pdf

accesso aperto

Note: Articolo
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 176.41 kB
Formato Adobe PDF
176.41 kB Adobe PDF
Freitag_Some-ball_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 138.2 kB
Formato Adobe PDF
138.2 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/513733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact