During space missions, radiation represents a major hazard for human health and involves all body organs and tissues. Regarding thyroid function, it has been shown that ultraviolet radiation (UVC) has dose-dependent apoptotic effects on FRTL-5 cells, a normal strain of rat thyrocytes. We examined the effects of a sublethal dose of UVC on FRTL-5 cell growth and gene expression. Cells exposed to 10 J/m(2) UVC showed no differences in viability compared to control cells after 24 h, but the BrdU incorporation was reduced, indicating a cytostatic effect. Quantitative RT-PCR carried out at 24 and 48 h after irradiation demonstrated that the mRNA levels of thyroglobulin (Tg), thyroperoxidase (Tpo), and sodium/iodide symporter (Nis) were transiently decreased at 24 h in treated cells, while the mRNAs of the thyroid transcription factors TTF1, Foxe1, and Pax8 were not affected. In cells cultured with TSH-free medium, the basal transcription of Tg, Tpo, and Nis genes was equally impaired by radiation and no longer stimulated by TSH. Overall, the results demonstrate that a sub-apoptotic dose of UVC compromises not only thyrocyte proliferation but also the expression of genes involved in thyroid hormone production. These findings might contribute to explaining the histological, biochemical, and clinical features of hypothyroidism observed in both animals and humans during spaceflight, and suggest that free thyroxine levels of astronauts during prolonged space missions should be monitored.

Effects of ultraviolet radiation on frtl-5 cell growth and thyroid-specific gene expression / Baldini, Enke; D'Armiento, Massimino; Sorrenti, Salvatore; Marianna Del, Sordo; Mocini, Renzo; Morrone, Stefania; Gnessi, Lucio; Francesco, Curcio; Ulisse, Salvatore. - In: ASTROBIOLOGY. - ISSN 1531-1074. - STAMPA. - 13:6(2013), pp. 536-542. [10.1089/ast.2013.0972]

Effects of ultraviolet radiation on frtl-5 cell growth and thyroid-specific gene expression

BALDINI, ENKE;D'ARMIENTO, Massimino;SORRENTI, Salvatore;MOCINI, RENZO
Writing – Review & Editing
;
MORRONE, Stefania;GNESSI, Lucio;ULISSE, SALVATORE
2013

Abstract

During space missions, radiation represents a major hazard for human health and involves all body organs and tissues. Regarding thyroid function, it has been shown that ultraviolet radiation (UVC) has dose-dependent apoptotic effects on FRTL-5 cells, a normal strain of rat thyrocytes. We examined the effects of a sublethal dose of UVC on FRTL-5 cell growth and gene expression. Cells exposed to 10 J/m(2) UVC showed no differences in viability compared to control cells after 24 h, but the BrdU incorporation was reduced, indicating a cytostatic effect. Quantitative RT-PCR carried out at 24 and 48 h after irradiation demonstrated that the mRNA levels of thyroglobulin (Tg), thyroperoxidase (Tpo), and sodium/iodide symporter (Nis) were transiently decreased at 24 h in treated cells, while the mRNAs of the thyroid transcription factors TTF1, Foxe1, and Pax8 were not affected. In cells cultured with TSH-free medium, the basal transcription of Tg, Tpo, and Nis genes was equally impaired by radiation and no longer stimulated by TSH. Overall, the results demonstrate that a sub-apoptotic dose of UVC compromises not only thyrocyte proliferation but also the expression of genes involved in thyroid hormone production. These findings might contribute to explaining the histological, biochemical, and clinical features of hypothyroidism observed in both animals and humans during spaceflight, and suggest that free thyroxine levels of astronauts during prolonged space missions should be monitored.
2013
thyroglobulin; thyrocyte; proliferation; apoptosis; spaceflight; thyroid; thyroperoxidase; frtl-5; gene expression; ultraviolet; sodium/iodide symporter; ultraviolet radiation
01 Pubblicazione su rivista::01a Articolo in rivista
Effects of ultraviolet radiation on frtl-5 cell growth and thyroid-specific gene expression / Baldini, Enke; D'Armiento, Massimino; Sorrenti, Salvatore; Marianna Del, Sordo; Mocini, Renzo; Morrone, Stefania; Gnessi, Lucio; Francesco, Curcio; Ulisse, Salvatore. - In: ASTROBIOLOGY. - ISSN 1531-1074. - STAMPA. - 13:6(2013), pp. 536-542. [10.1089/ast.2013.0972]
File allegati a questo prodotto
File Dimensione Formato  
Baldini_Ultraviolet-on-FRTL5_ 2013.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 260.42 kB
Formato Adobe PDF
260.42 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/513288
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact