The paper illustrates two different Artificial Neural Networks (ANN) architectures for electric Short-Term Load Forecasting (STLF). Two multi-layer perceptron ANN using the back-propagation learning algorithm have been implemented which provide different, although complementary, forecasting approaches (static and dynamic). In order to test the potentialities of the architectures implemented, the ANN have been applied to the Short-Term Forecasting of Italian hourly electric load. The importance of this load (peak demands up to about 38 000 MW) requires tools for STLF which must be as more accurate and precise as possible. This fact has imposed the adoption of some algorithmic enhancements to the basic back-propagation algorithm formulation. Since an adequate formulation of the influence exerted on hourly electric load by the main meteorological and climatic factors is not known at present, the data set used for ANN training phase has concerned only historical series of electric hourly demand. The paper illustrates the two ANN architectures as well as the computational platforms used for implementation. Finally, some results obtained from the application of the two ANN to the short-term forecasting of Italian electric load relevant to three different weeks of the year 1993 are comparatively reported.

Application of artificial networks to historical data analysis for short-term electric load forecasting / Caciotta, M.; Lamedica, Regina; Orsolini Cencelli, V.; Prudenzi, A.; Sforna, M.. - In: EUROPEAN TRANSACTIONS ON ELECTRICAL POWER. - ISSN 1546-3109. - STAMPA. - 7:1(1997), pp. 49-56. [10.1002/etep.4450070108]

Application of artificial networks to historical data analysis for short-term electric load forecasting

LAMEDICA, Regina;
1997

Abstract

The paper illustrates two different Artificial Neural Networks (ANN) architectures for electric Short-Term Load Forecasting (STLF). Two multi-layer perceptron ANN using the back-propagation learning algorithm have been implemented which provide different, although complementary, forecasting approaches (static and dynamic). In order to test the potentialities of the architectures implemented, the ANN have been applied to the Short-Term Forecasting of Italian hourly electric load. The importance of this load (peak demands up to about 38 000 MW) requires tools for STLF which must be as more accurate and precise as possible. This fact has imposed the adoption of some algorithmic enhancements to the basic back-propagation algorithm formulation. Since an adequate formulation of the influence exerted on hourly electric load by the main meteorological and climatic factors is not known at present, the data set used for ANN training phase has concerned only historical series of electric hourly demand. The paper illustrates the two ANN architectures as well as the computational platforms used for implementation. Finally, some results obtained from the application of the two ANN to the short-term forecasting of Italian electric load relevant to three different weeks of the year 1993 are comparatively reported.
1997
Artificial neural networks; short-term electric load forecasting; historical electric data analysis
01 Pubblicazione su rivista::01a Articolo in rivista
Application of artificial networks to historical data analysis for short-term electric load forecasting / Caciotta, M.; Lamedica, Regina; Orsolini Cencelli, V.; Prudenzi, A.; Sforna, M.. - In: EUROPEAN TRANSACTIONS ON ELECTRICAL POWER. - ISSN 1546-3109. - STAMPA. - 7:1(1997), pp. 49-56. [10.1002/etep.4450070108]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/513221
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact