Metastasis is the leading cause of cancer death, yet it is mechanistically considered a very inefficient process suggesting the presence of some sort of (e.g. systemic) routes for fuelling the process. The pre-metastatic niche formation is described as one such metastasis promoting route. Now, the emerging potentials of tumor-derived microvesicles (TDMVs), not only in formulating the pre-metastatic niche, but also conferring neoplastic phenotypes onto normal cells, has integrated new concepts into the field. Here, we note as an ancillary proposition that, exerting functional disturbances in other sites, TDMVs (we have termed them metastasomes) may aid foundation of the secondary lesions via two seemingly interrelated models: (i) tumor-organ-training (TOTr), training a proper niche for the growth of the disseminated tumor cells; (ii) tumor-organ-targeting (TOTa), contribution to the propagation of the transformed phenotype via direct or indirect (TOTr-mediated disturbed stroma) transformation and/or heightened growth/survival states of the normal resident cells in the secondary organs. Respecting the high content of the RNA molecules (particularly microRNAs) identified in the secretory MVs, they may play crucial parts in such "malignant trait" spreading system. That is, the interactions between tumor tissue-specific RNA signatures, being transferred via metastasomes, and the cell-type/tissue-specific RNA stockrooms in other areas may settle a unique outcome in each organ. Thus, serving as tumor-organ matchmakers, the RNA molecules may also play substantial roles in the seeding and tropism of the process. © 2012 Elsevier Ltd.

Tumor-derived microvesicles: The metastasomes / Reza, Ghasemi; Antonino, Grassadonia; Nicola, Tinari; Enza, Piccolo; Clara, Natoli; Tomao, Federica; Stefano, Iacobelli. - In: MEDICAL HYPOTHESES. - ISSN 0306-9877. - ELETTRONICO. - 80:1(2013), pp. 75-82. [10.1016/j.mehy.2012.10.011]

Tumor-derived microvesicles: The metastasomes

TOMAO, FEDERICA;
2013

Abstract

Metastasis is the leading cause of cancer death, yet it is mechanistically considered a very inefficient process suggesting the presence of some sort of (e.g. systemic) routes for fuelling the process. The pre-metastatic niche formation is described as one such metastasis promoting route. Now, the emerging potentials of tumor-derived microvesicles (TDMVs), not only in formulating the pre-metastatic niche, but also conferring neoplastic phenotypes onto normal cells, has integrated new concepts into the field. Here, we note as an ancillary proposition that, exerting functional disturbances in other sites, TDMVs (we have termed them metastasomes) may aid foundation of the secondary lesions via two seemingly interrelated models: (i) tumor-organ-training (TOTr), training a proper niche for the growth of the disseminated tumor cells; (ii) tumor-organ-targeting (TOTa), contribution to the propagation of the transformed phenotype via direct or indirect (TOTr-mediated disturbed stroma) transformation and/or heightened growth/survival states of the normal resident cells in the secondary organs. Respecting the high content of the RNA molecules (particularly microRNAs) identified in the secretory MVs, they may play crucial parts in such "malignant trait" spreading system. That is, the interactions between tumor tissue-specific RNA signatures, being transferred via metastasomes, and the cell-type/tissue-specific RNA stockrooms in other areas may settle a unique outcome in each organ. Thus, serving as tumor-organ matchmakers, the RNA molecules may also play substantial roles in the seeding and tropism of the process. © 2012 Elsevier Ltd.
2013
microvesicles; metastasomes; neoplasia
01 Pubblicazione su rivista::01a Articolo in rivista
Tumor-derived microvesicles: The metastasomes / Reza, Ghasemi; Antonino, Grassadonia; Nicola, Tinari; Enza, Piccolo; Clara, Natoli; Tomao, Federica; Stefano, Iacobelli. - In: MEDICAL HYPOTHESES. - ISSN 0306-9877. - ELETTRONICO. - 80:1(2013), pp. 75-82. [10.1016/j.mehy.2012.10.011]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/511815
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact