In this paper we show approximation procedures for studying singular elliptic problems whose model is (eqution presented) where b(u) is singular in the u-variable at u = 0, and f ε Lm(Ω) >, with m > N/2, is a function that does not have a constant sign. We will give an overview of the landscape that occurs when diffierent problems (classiffied according to the sign of b(s)) are considered. So, in each case and using diffierent methods, we will obtain a priori estimates, prove the convergence of the approximate solutions, and show some regularity properties of the limit.

A priori estimates for elliptic problems with a strongly singular gradient term and a general datum / Giachetti, Daniela; Petitta, Francesco; S., Segura De Leon. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - STAMPA. - 26:9-10(2013), pp. 913-948.

A priori estimates for elliptic problems with a strongly singular gradient term and a general datum

GIACHETTI, Daniela;PETITTA, FRANCESCO;
2013

Abstract

In this paper we show approximation procedures for studying singular elliptic problems whose model is (eqution presented) where b(u) is singular in the u-variable at u = 0, and f ε Lm(Ω) >, with m > N/2, is a function that does not have a constant sign. We will give an overview of the landscape that occurs when diffierent problems (classiffied according to the sign of b(s)) are considered. So, in each case and using diffierent methods, we will obtain a priori estimates, prove the convergence of the approximate solutions, and show some regularity properties of the limit.
2013
01 Pubblicazione su rivista::01a Articolo in rivista
A priori estimates for elliptic problems with a strongly singular gradient term and a general datum / Giachetti, Daniela; Petitta, Francesco; S., Segura De Leon. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - STAMPA. - 26:9-10(2013), pp. 913-948.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/509807
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact