We propose to solve a general quasi-variational inequality by using its Karush-Kuhn-Tucker conditions. To this end we use a globally convergent algorithm based on a potential reduction approach. We establish global convergence results for many interesting instances of quasi-variational inequalities, vastly broadening the class of problems that can be solved with theoretical guarantees. Our numerical testings are very promising and show the practical viability of the approach.

Solving quasi-variational inequalities via their KKT conditions / Facchinei, Francisco; Christian, Kanzow; Sagratella, Simone. - In: MATHEMATICAL PROGRAMMING. - ISSN 0025-5610. - 144:1-2(2014), pp. 369-412. [10.1007/s10107-013-0637-0]

Solving quasi-variational inequalities via their KKT conditions

FACCHINEI, Francisco;SAGRATELLA, SIMONE
2014

Abstract

We propose to solve a general quasi-variational inequality by using its Karush-Kuhn-Tucker conditions. To this end we use a globally convergent algorithm based on a potential reduction approach. We establish global convergence results for many interesting instances of quasi-variational inequalities, vastly broadening the class of problems that can be solved with theoretical guarantees. Our numerical testings are very promising and show the practical viability of the approach.
2014
global convergence; interior-point method; kkt conditions; quasi-variational inequality
01 Pubblicazione su rivista::01a Articolo in rivista
Solving quasi-variational inequalities via their KKT conditions / Facchinei, Francisco; Christian, Kanzow; Sagratella, Simone. - In: MATHEMATICAL PROGRAMMING. - ISSN 0025-5610. - 144:1-2(2014), pp. 369-412. [10.1007/s10107-013-0637-0]
File allegati a questo prodotto
File Dimensione Formato  
VE_2014_11573-508893.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 419.02 kB
Formato Adobe PDF
419.02 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/508893
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 106
  • ???jsp.display-item.citation.isi??? 88
social impact