In this paper we report an X-ray diffraction (XRD), Raman spectroscopy and electrochemical study of the Li10GeP2S12 lithium ion conducting solid electrolyte. The XRD results confirm the structure of the electrolyte, the Raman spectroscopy evidences the composite nature of the solid solution showing some spectral features typical of the starting Li 2S, GeS2, and P2S5 materials, whereas a band peaked at about 495 cm-1 is identified as the specific fingerprint of the Li10GeP2S12 compound. The electrochemical studies, involving impedance spectroscopy, scan voltammetry and chrono-amperometry, demonstrate an ionic conductivity of the order of 10 -3 S cm-1 over a wide temperature range with activation energy of approximately 0.1 eV, lithium transference of 0.99 and a stability window extending from 0 V to 6 V vs. Li. Further tests yield preliminary results obtained by Potentiodynamic Cycling with Galvanostatic Acceleration (PGCA) evaluation, which were carried out on a lithium metal anode as well as on lithium iron phosphate LiFePO4 and lithium nickel manganese oxide LiNi0.5Mn1.5O4 cathodes in cells using Li 10GeP2S12 as electrolyte. The material properties described above in conjunction with these tests identify Li 10GeP2S12 a very promising electrolyte for the development of advanced solid-state batteries. © 2012 Elsevier B.V. All rights reserved.

A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte / Hassoun, Jusef; Verrelli, Roberta; Reale, Priscilla; Panero, Stefania; Gino, Mariotto; Greenbaum, Steven; Scrosati, Bruno. - In: JOURNAL OF POWER SOURCES. - ISSN 0378-7753. - STAMPA. - 229:(2013), pp. 117-122. [10.1016/j.jpowsour.2012.11.130]

A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte

HASSOUN, JUSEF;VERRELLI, ROBERTA;REALE, Priscilla;PANERO, Stefania;SCROSATI, Bruno
2013

Abstract

In this paper we report an X-ray diffraction (XRD), Raman spectroscopy and electrochemical study of the Li10GeP2S12 lithium ion conducting solid electrolyte. The XRD results confirm the structure of the electrolyte, the Raman spectroscopy evidences the composite nature of the solid solution showing some spectral features typical of the starting Li 2S, GeS2, and P2S5 materials, whereas a band peaked at about 495 cm-1 is identified as the specific fingerprint of the Li10GeP2S12 compound. The electrochemical studies, involving impedance spectroscopy, scan voltammetry and chrono-amperometry, demonstrate an ionic conductivity of the order of 10 -3 S cm-1 over a wide temperature range with activation energy of approximately 0.1 eV, lithium transference of 0.99 and a stability window extending from 0 V to 6 V vs. Li. Further tests yield preliminary results obtained by Potentiodynamic Cycling with Galvanostatic Acceleration (PGCA) evaluation, which were carried out on a lithium metal anode as well as on lithium iron phosphate LiFePO4 and lithium nickel manganese oxide LiNi0.5Mn1.5O4 cathodes in cells using Li 10GeP2S12 as electrolyte. The material properties described above in conjunction with these tests identify Li 10GeP2S12 a very promising electrolyte for the development of advanced solid-state batteries. © 2012 Elsevier B.V. All rights reserved.
2013
li10gep2s12; li10gep2s12 solid electrolyte xrd raman lithium battery; lithium battery; raman; solid electrolyte; xrd
01 Pubblicazione su rivista::01a Articolo in rivista
A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte / Hassoun, Jusef; Verrelli, Roberta; Reale, Priscilla; Panero, Stefania; Gino, Mariotto; Greenbaum, Steven; Scrosati, Bruno. - In: JOURNAL OF POWER SOURCES. - ISSN 0378-7753. - STAMPA. - 229:(2013), pp. 117-122. [10.1016/j.jpowsour.2012.11.130]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/505755
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 75
social impact