Metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs), produced in the brain by cells of non-neural and neural origin, including neural progenitors (NPs), are emerging as regulators of nervous system development and adult brain functions. In the present study, we explored whether MMP-2, MMP-9, and TIMP-2, abundantly produced in the brain, modulate NP developmental properties. We found that treatment of NPs, isolated from the murine fetal cerebral cortex or adult subventricular zone, with the clinically tested broad-spectrum MMP inhibitor Marimastat profoundly affected the NP differentiation fate. Marimastat treatment allowed for an enrichment of our cultures in neuronal cells, inducing NPs to generate higher percentage of neurons and a lower percentage of astrocytes, possibly affecting NP commitment. Consistently with its proneurogenic effect, Marimastat early downregulated the expression of Notch target genes, such as Hes1 and Hes5. MMP-2 and MMP-9 profiling on proliferating and differentiating NPs revealed that MMP-9 was not expressed under these conditions, whereas MMP-2 increased in the medium as pro-MMP-2 (72 kDa) during differentiation; its active form (62 kDa) was not detectable by gel zymography. MMP-2 silencing or administration of recombinant active MMP-2 demonstrated that MMP-2 does not affect NP neuronal differentiation, nor it is involved in the Marimastat proneurogenic effect. We also found that TIMP-2 is expressed in NPs and increases during late differentiation, mainly as a consequence of astrocyte generation. Endogenous TIMP-2 did not modulate NP neurogenic potential; however, the proneurogenic action of Marimastat was mediated by TIMP-2, as demonstrated by silencing experiments. In conclusion, our data exclude a major involvement of MMP-2 and MMP-9 in the regulation of basal NP differentiation, but highlight the ability of TIMP-2 to act as key effector of the proneurogenic response to an inducing stimulus such as Marimastat.

The Matrix Metalloproteinase Inhibitor Marimastat Promotes Neural Progenitor Cell Differentiation into Neurons by Gelatinase-Independent TIMP-2-Dependent Mechanisms / Maddalena, Sinno; Biagioni, Stefano; Maria Antonietta Ajmone, Cat; Pafumi, Irene; Pasquale, Caramanica; Virginia, Medda; Gaetana, Tonti; Luisa, Minghetti; Ferdinando, Mannello; Cacci, Emanuele. - In: STEM CELLS AND DEVELOPMENT. - ISSN 1547-3287. - STAMPA. - 22:3(2013), pp. 345-358. [10.1089/scd.2012.0299]

The Matrix Metalloproteinase Inhibitor Marimastat Promotes Neural Progenitor Cell Differentiation into Neurons by Gelatinase-Independent TIMP-2-Dependent Mechanisms

BIAGIONI, Stefano;PAFUMI, IRENE;CACCI, Emanuele
2013

Abstract

Metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs), produced in the brain by cells of non-neural and neural origin, including neural progenitors (NPs), are emerging as regulators of nervous system development and adult brain functions. In the present study, we explored whether MMP-2, MMP-9, and TIMP-2, abundantly produced in the brain, modulate NP developmental properties. We found that treatment of NPs, isolated from the murine fetal cerebral cortex or adult subventricular zone, with the clinically tested broad-spectrum MMP inhibitor Marimastat profoundly affected the NP differentiation fate. Marimastat treatment allowed for an enrichment of our cultures in neuronal cells, inducing NPs to generate higher percentage of neurons and a lower percentage of astrocytes, possibly affecting NP commitment. Consistently with its proneurogenic effect, Marimastat early downregulated the expression of Notch target genes, such as Hes1 and Hes5. MMP-2 and MMP-9 profiling on proliferating and differentiating NPs revealed that MMP-9 was not expressed under these conditions, whereas MMP-2 increased in the medium as pro-MMP-2 (72 kDa) during differentiation; its active form (62 kDa) was not detectable by gel zymography. MMP-2 silencing or administration of recombinant active MMP-2 demonstrated that MMP-2 does not affect NP neuronal differentiation, nor it is involved in the Marimastat proneurogenic effect. We also found that TIMP-2 is expressed in NPs and increases during late differentiation, mainly as a consequence of astrocyte generation. Endogenous TIMP-2 did not modulate NP neurogenic potential; however, the proneurogenic action of Marimastat was mediated by TIMP-2, as demonstrated by silencing experiments. In conclusion, our data exclude a major involvement of MMP-2 and MMP-9 in the regulation of basal NP differentiation, but highlight the ability of TIMP-2 to act as key effector of the proneurogenic response to an inducing stimulus such as Marimastat.
2013
01 Pubblicazione su rivista::01a Articolo in rivista
The Matrix Metalloproteinase Inhibitor Marimastat Promotes Neural Progenitor Cell Differentiation into Neurons by Gelatinase-Independent TIMP-2-Dependent Mechanisms / Maddalena, Sinno; Biagioni, Stefano; Maria Antonietta Ajmone, Cat; Pafumi, Irene; Pasquale, Caramanica; Virginia, Medda; Gaetana, Tonti; Luisa, Minghetti; Ferdinando, Mannello; Cacci, Emanuele. - In: STEM CELLS AND DEVELOPMENT. - ISSN 1547-3287. - STAMPA. - 22:3(2013), pp. 345-358. [10.1089/scd.2012.0299]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/505541
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact