Microchips, constructed with a variety of microfabrication technologies (photolithography, micropatterning, microjet printing, light-directed chemical synthesis, laser stereochemical etching, and microcontact printing) are being applied to molecular biology. The new microchip-based analytical devices promise to solve the analytical problems faced by many molecular biologists (eg, contamination, low throughput, and high cost). They may revolutionize molecular biology and its application in clinical medicine, forensic science, and environmental monitoring. A typical biochemical analysis involves three main steps: (1) sample preparation, (2) biochemical reaction, and (3) detection (either separation or hybridization may be involved) accompanied by data acquisition and interpretation. The construction of a miniturized analyzer will therefore necessarily entail the miniaturization and integration of all three of these processes. The literature related to the miniaturization of these three processes indicates that the greatest emphasis so far is on the investigation and development of methods for the detection of nucleic acid, followed by the optimization of a biochemical reaction, such as the polymerase chain reaction. The first step involving sample preparation has received little attention. In this review the state of the art of, microchip-based, miniaturized analytical processes (eg, sample preparation, biochemical reaction, and detection of products) are outlined and the applications of microchip-based devices in the molecular diagnosis of genetic diseases are discussed.

Microchip-based Devices for Molecular Diagnosis of Genetic Diseases / J., Cheng; Fortina, Paolo; S., Surrey; L. J., Kricka; P., Wilding. - In: MOLECULAR DIAGNOSIS. - ISSN 1084-8592. - STAMPA. - 1:3(1996), pp. 183-200. [10.1054/modi00100183]

Microchip-based Devices for Molecular Diagnosis of Genetic Diseases.

FORTINA, PAOLO;
1996

Abstract

Microchips, constructed with a variety of microfabrication technologies (photolithography, micropatterning, microjet printing, light-directed chemical synthesis, laser stereochemical etching, and microcontact printing) are being applied to molecular biology. The new microchip-based analytical devices promise to solve the analytical problems faced by many molecular biologists (eg, contamination, low throughput, and high cost). They may revolutionize molecular biology and its application in clinical medicine, forensic science, and environmental monitoring. A typical biochemical analysis involves three main steps: (1) sample preparation, (2) biochemical reaction, and (3) detection (either separation or hybridization may be involved) accompanied by data acquisition and interpretation. The construction of a miniturized analyzer will therefore necessarily entail the miniaturization and integration of all three of these processes. The literature related to the miniaturization of these three processes indicates that the greatest emphasis so far is on the investigation and development of methods for the detection of nucleic acid, followed by the optimization of a biochemical reaction, such as the polymerase chain reaction. The first step involving sample preparation has received little attention. In this review the state of the art of, microchip-based, miniaturized analytical processes (eg, sample preparation, biochemical reaction, and detection of products) are outlined and the applications of microchip-based devices in the molecular diagnosis of genetic diseases are discussed.
1996
01 Pubblicazione su rivista::01a Articolo in rivista
Microchip-based Devices for Molecular Diagnosis of Genetic Diseases / J., Cheng; Fortina, Paolo; S., Surrey; L. J., Kricka; P., Wilding. - In: MOLECULAR DIAGNOSIS. - ISSN 1084-8592. - STAMPA. - 1:3(1996), pp. 183-200. [10.1054/modi00100183]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/502769
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 3
social impact