Nickel nanowires have been formed by stationary electrochemical deposition of nickel into mesoporous silicon templates from the modified Watts bath. Monitoring of the porous silicon potential during the electrochemical deposition has given the determination of the emergence of Ni on the outer surface of porous layer. Maximum filling factor of porous silicon with Ni has been achieved to 67%. The pore dimensions have been found to define the length and diameter of the Ni nanowires that have equaled to 10 mu m and 100-120 nm, respectively. The polycrystalline nature of the nickel nanowires, as well as the expansion of nickel lattice constant in comparison with bulk material has been established by analyzing the X-ray diffraction spectra. The synthesized samples have possessed ferromagnetic properties, which have been confirmed by temperature measurements of the magnetization. Smaller values of the specific magnetization of the Ni/PS samples and the atomic magnetic moment of Ni atoms at the low temperature with respect to those of bulk material have been suggested to be mostly caused by formation of nickel silicide at the beginning of the Ni electrochemical deposition. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.050210jes] All rights reserved.

Electrochemical Deposition and Characterization of Ni in Mesoporous Silicon / A., Dolgiy; S. v., Redko; H., Bandarenka; S. l., Prischepa; K., Yanushkevich; Nenzi, Paolo; Balucani, Marco; V., Bondarenko. - In: JOURNAL OF THE ELECTROCHEMICAL SOCIETY. - ISSN 0013-4651. - STAMPA. - 159:10(2012), pp. D623-D627. [10.1149/2.050210jes]

Electrochemical Deposition and Characterization of Ni in Mesoporous Silicon

NENZI, Paolo;BALUCANI, Marco;
2012

Abstract

Nickel nanowires have been formed by stationary electrochemical deposition of nickel into mesoporous silicon templates from the modified Watts bath. Monitoring of the porous silicon potential during the electrochemical deposition has given the determination of the emergence of Ni on the outer surface of porous layer. Maximum filling factor of porous silicon with Ni has been achieved to 67%. The pore dimensions have been found to define the length and diameter of the Ni nanowires that have equaled to 10 mu m and 100-120 nm, respectively. The polycrystalline nature of the nickel nanowires, as well as the expansion of nickel lattice constant in comparison with bulk material has been established by analyzing the X-ray diffraction spectra. The synthesized samples have possessed ferromagnetic properties, which have been confirmed by temperature measurements of the magnetization. Smaller values of the specific magnetization of the Ni/PS samples and the atomic magnetic moment of Ni atoms at the low temperature with respect to those of bulk material have been suggested to be mostly caused by formation of nickel silicide at the beginning of the Ni electrochemical deposition. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.050210jes] All rights reserved.
2012
01 Pubblicazione su rivista::01a Articolo in rivista
Electrochemical Deposition and Characterization of Ni in Mesoporous Silicon / A., Dolgiy; S. v., Redko; H., Bandarenka; S. l., Prischepa; K., Yanushkevich; Nenzi, Paolo; Balucani, Marco; V., Bondarenko. - In: JOURNAL OF THE ELECTROCHEMICAL SOCIETY. - ISSN 0013-4651. - STAMPA. - 159:10(2012), pp. D623-D627. [10.1149/2.050210jes]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/502723
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact