Assume that f ( s ) = F ′ ( s ) where F is a double-well potential. Under certain conditions on the Lipschitz constant of f on [ − 1 , 1 ] , we prove that arbitrary bounded global solutions of the semilinear equation Δ u = f ( u ) on hyperbolic space H n must reduce to functions of one variable provided they admit asymptotic boundary values on S n − 1 = ∂ ∞ H n which are invariant under a cohomogeneity one subgroup of the group of isometries of H n . We also prove existence of these one-dimensional solutions.

Symmetry for Solutions of Two-phase Semilinear Elliptic Equations on Hyperbolic Space / Birindelli, Isabella; Rafe, Mazzeo. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - 58:5(2009), pp. 2347-2368. [10.1512/iumj.2009.58.3714]

Symmetry for Solutions of Two-phase Semilinear Elliptic Equations on Hyperbolic Space

BIRINDELLI, Isabella;
2009

Abstract

Assume that f ( s ) = F ′ ( s ) where F is a double-well potential. Under certain conditions on the Lipschitz constant of f on [ − 1 , 1 ] , we prove that arbitrary bounded global solutions of the semilinear equation Δ u = f ( u ) on hyperbolic space H n must reduce to functions of one variable provided they admit asymptotic boundary values on S n − 1 = ∂ ∞ H n which are invariant under a cohomogeneity one subgroup of the group of isometries of H n . We also prove existence of these one-dimensional solutions.
2009
double-well potential; hyperbolic space; one-dimensional solutions; semilinear elliptic equations; symmetry
01 Pubblicazione su rivista::01a Articolo in rivista
Symmetry for Solutions of Two-phase Semilinear Elliptic Equations on Hyperbolic Space / Birindelli, Isabella; Rafe, Mazzeo. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - 58:5(2009), pp. 2347-2368. [10.1512/iumj.2009.58.3714]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/50259
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact