Here, we propose a new model for understanding the Warburg effect in tumor metabolism. Our hypothesis is that epithelial cancer cells induce the Warburg effect (aerobic glycolysis) in neighboring stromal fibroblasts. These cancer-associated fibroblasts, then undergo myo-fibroblastic differentiation, and secrete lactate and pyruvate (energy metabolites resulting from aerobic glycolysis). Epithelial cancer cells could then take up these energy-rich metabolites and use them in the mitochondrial TCA cycle, thereby promoting efficient energy production (ATP generation via oxidative phosphorylation), resulting in a higher proliferative capacity. In this alternative model of tumorigenesis, the epithelial cancer cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich micro-environment for facilitating tumor growth and angiogenesis. In essence, the fibroblastic tumor stroma would directly feed the epithelial cancer cells, in a type of host-parasite relationship. We have termed this new idea the “Reverse Warburg Effect.” In this scenario, the epithelial tumor cells “corrupt” the normal stroma, turning it into a factory for the production of energyrich metabolites. This alternative model is still consistent with Warburg’s original observation that tumors show a metabolic shift towards aerobic glycolysis. In support of this idea, unbiased proteomic analysis and transcriptional profiling of a new model of cancer-associated fibroblasts [caveolin-1 (Cav-1) deficient stromal cells], shows the upregulation of both (1) myo-fibroblast markers and (2) glycolytic enzymes, under normoxic conditions. We validated the expression of these proteins in the fibroblastic stroma of human breast cancer tissues that lack stromal Cav-1. Importantly, a loss of stromal Cav-1 in human breast cancers is associated with tumor recurrence, metastasis, and poor clinical outcome. Thus, an absence of stromal Cav-1 may be a biomarker for the “Reverse Warburg Effect,” explaining its powerful predictive value.

The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma / Pavlides, S; Whitaker Menezes, D; Castello Cros, R; Flomenberg, N; Witkiewicz, Ak; Frank, Pg; Casimiro, Mc; Wang, C; Fortina, Paolo; Addya, S; Pestell, Rg; Martinez Outschoorn, Ue; Sotgia, F; Lisanti, Mp. - In: CELL CYCLE. - ISSN 1538-4101. - STAMPA. - 8:(2009), pp. 3984-4001.

The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma.

FORTINA, PAOLO;
2009

Abstract

Here, we propose a new model for understanding the Warburg effect in tumor metabolism. Our hypothesis is that epithelial cancer cells induce the Warburg effect (aerobic glycolysis) in neighboring stromal fibroblasts. These cancer-associated fibroblasts, then undergo myo-fibroblastic differentiation, and secrete lactate and pyruvate (energy metabolites resulting from aerobic glycolysis). Epithelial cancer cells could then take up these energy-rich metabolites and use them in the mitochondrial TCA cycle, thereby promoting efficient energy production (ATP generation via oxidative phosphorylation), resulting in a higher proliferative capacity. In this alternative model of tumorigenesis, the epithelial cancer cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich micro-environment for facilitating tumor growth and angiogenesis. In essence, the fibroblastic tumor stroma would directly feed the epithelial cancer cells, in a type of host-parasite relationship. We have termed this new idea the “Reverse Warburg Effect.” In this scenario, the epithelial tumor cells “corrupt” the normal stroma, turning it into a factory for the production of energyrich metabolites. This alternative model is still consistent with Warburg’s original observation that tumors show a metabolic shift towards aerobic glycolysis. In support of this idea, unbiased proteomic analysis and transcriptional profiling of a new model of cancer-associated fibroblasts [caveolin-1 (Cav-1) deficient stromal cells], shows the upregulation of both (1) myo-fibroblast markers and (2) glycolytic enzymes, under normoxic conditions. We validated the expression of these proteins in the fibroblastic stroma of human breast cancer tissues that lack stromal Cav-1. Importantly, a loss of stromal Cav-1 in human breast cancers is associated with tumor recurrence, metastasis, and poor clinical outcome. Thus, an absence of stromal Cav-1 may be a biomarker for the “Reverse Warburg Effect,” explaining its powerful predictive value.
2009
01 Pubblicazione su rivista::01a Articolo in rivista
The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma / Pavlides, S; Whitaker Menezes, D; Castello Cros, R; Flomenberg, N; Witkiewicz, Ak; Frank, Pg; Casimiro, Mc; Wang, C; Fortina, Paolo; Addya, S; Pestell, Rg; Martinez Outschoorn, Ue; Sotgia, F; Lisanti, Mp. - In: CELL CYCLE. - ISSN 1538-4101. - STAMPA. - 8:(2009), pp. 3984-4001.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/502517
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 590
  • Scopus 1086
  • ???jsp.display-item.citation.isi??? 1038
social impact