We describe of the generalized Drinfeld-Sokolov Hamiltonian reduction for the construction of classical -algebras within the framework of Poisson vertex algebras. In this context, the gauge group action on the phase space is translated in terms of (the exponential of) a Lie conformal algebra action on the space of functions. Following the ideas of Drinfeld and Sokolov, we then establish under certain sufficient conditions the applicability of the Lenard-Magri scheme of integrability and the existence of the corresponding integrable hierarchy of bi-Hamiltonian equations.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Classical W-Algebras and Generalized Drinfeld-Sokolov Bi-Hamiltonian Systems Within the Theory of Poisson Vertex Algebras |
Autori: | |
Data di pubblicazione: | 2013 |
Rivista: | |
Handle: | http://hdl.handle.net/11573/498821 |
Appartiene alla tipologia: | 01a Articolo in rivista |