We consider list coloring problems for graphs G of girth larger than c logΔ-1 n, where n and Δ ≥ 3 are, respectively, the order and the maximum degree of G, and c is a suitable constant. First, we determine that the edge and total list chromatic numbers of these graphs are X′l(G) = Δ and X″l(G) = Δ + 1. This proves that the general conjectures of Bollobás and Harris [Graphs Combin., 1 (1985), pp. 115-127], Behzad [The total chromatic number, in Combinatorial Mathematics and Its Applications (Proc. Conf., Oxford, 1969), Academic Press, London, 1971, pp. 1-8], Vizing [Diskret. Analiz., 3 (1964), pp. 25-30], and Juvan, Mohar, and Škrekovski [Combin. Probab. Comput.,7 (1998), pp. 181-188] hold for this particular class of graphs. Moreover, our proofs exhibit a certain degree of "locality," which we exploit to obtain an efficient distributed algorithm able to compute both kinds of optimal list colorings. Also, using an argument similar to one of Erdös, we show that our algorithm can compute k-list vertex colorings of graphs having girth larger than c logk-1 n. © 2010 Society for Industrial and Applied Mathematics.

The local nature of list colorings for graphs of high girth / Chierichetti, Flavio; Andrea, Vattani. - In: SIAM JOURNAL ON COMPUTING. - ISSN 0097-5397. - 39:6(2010), pp. 2232-2250. [10.1137/080732109]

The local nature of list colorings for graphs of high girth

CHIERICHETTI, FLAVIO;
2010

Abstract

We consider list coloring problems for graphs G of girth larger than c logΔ-1 n, where n and Δ ≥ 3 are, respectively, the order and the maximum degree of G, and c is a suitable constant. First, we determine that the edge and total list chromatic numbers of these graphs are X′l(G) = Δ and X″l(G) = Δ + 1. This proves that the general conjectures of Bollobás and Harris [Graphs Combin., 1 (1985), pp. 115-127], Behzad [The total chromatic number, in Combinatorial Mathematics and Its Applications (Proc. Conf., Oxford, 1969), Academic Press, London, 1971, pp. 1-8], Vizing [Diskret. Analiz., 3 (1964), pp. 25-30], and Juvan, Mohar, and Škrekovski [Combin. Probab. Comput.,7 (1998), pp. 181-188] hold for this particular class of graphs. Moreover, our proofs exhibit a certain degree of "locality," which we exploit to obtain an efficient distributed algorithm able to compute both kinds of optimal list colorings. Also, using an argument similar to one of Erdös, we show that our algorithm can compute k-list vertex colorings of graphs having girth larger than c logk-1 n. © 2010 Society for Industrial and Applied Mathematics.
2010
algorithms; girth; graph coloring
01 Pubblicazione su rivista::01a Articolo in rivista
The local nature of list colorings for graphs of high girth / Chierichetti, Flavio; Andrea, Vattani. - In: SIAM JOURNAL ON COMPUTING. - ISSN 0097-5397. - 39:6(2010), pp. 2232-2250. [10.1137/080732109]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/497807
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact