We consider the dynamical system consisting of the Gibbs ensemble at some fixed temperature and density for a semi-infinite one-dimensional ideal gas of point particles. The first particle has mass M, all the other particles mass m < M. Tt is the time evolution which describes free motion of the particles except for elastic collisions with each other and with the wall at the origin. We prove that the system i a K-system.

Ergodic Properties of a Semi-Infinite One-Dimensional System of Statistical Mechanics / Boldrighini, Carlo; A., Pellegrinotti; E., Presutti; Sinai, Y. a. G.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 101:(1985), pp. 363-382.

Ergodic Properties of a Semi-Infinite One-Dimensional System of Statistical Mechanics

BOLDRIGHINI, Carlo;
1985

Abstract

We consider the dynamical system consisting of the Gibbs ensemble at some fixed temperature and density for a semi-infinite one-dimensional ideal gas of point particles. The first particle has mass M, all the other particles mass m < M. Tt is the time evolution which describes free motion of the particles except for elastic collisions with each other and with the wall at the origin. We prove that the system i a K-system.
1985
Ergodic Properties; infinite classical particle systems; collision dynamics
01 Pubblicazione su rivista::01a Articolo in rivista
Ergodic Properties of a Semi-Infinite One-Dimensional System of Statistical Mechanics / Boldrighini, Carlo; A., Pellegrinotti; E., Presutti; Sinai, Y. a. G.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 101:(1985), pp. 363-382.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/497728
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact