A standard quadratic optimization problem (StQP) consists of finding the largest or smallest value of a (possibly indefinite) quadratic form over the standard simplex which is the intersection of a hyperplane with the positive orthant. This NP-hard problem has several immediate real-world applications like the Maximum Clique Problem, and it also occurs in a natural way as a subproblem in quadratic programming with linear constraints. We propose unconstrained reformulations of StQPs, by using different approaches. We test our method on clique problems from the DIMACS challenge.
Unconstrained formulation of standard quadratic optimization problems / Immanuel M., Bomze; Grippo, Luigi; Palagi, Laura. - In: TOP. - ISSN 1134-5764. - STAMPA. - 20:1(2012), pp. 35-51. [10.1007/s11750-010-0166-4]
Unconstrained formulation of standard quadratic optimization problems
GRIPPO, Luigi;PALAGI, Laura
2012
Abstract
A standard quadratic optimization problem (StQP) consists of finding the largest or smallest value of a (possibly indefinite) quadratic form over the standard simplex which is the intersection of a hyperplane with the positive orthant. This NP-hard problem has several immediate real-world applications like the Maximum Clique Problem, and it also occurs in a natural way as a subproblem in quadratic programming with linear constraints. We propose unconstrained reformulations of StQPs, by using different approaches. We test our method on clique problems from the DIMACS challenge.File | Dimensione | Formato | |
---|---|---|---|
Bomze_Unconstrained_2012.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
587.46 kB
Formato
Adobe PDF
|
587.46 kB | Adobe PDF | Contatta l'autore |
VE_2012_11573-49540.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
587.46 kB
Formato
Adobe PDF
|
587.46 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.