A new duration intrinsic model for improved speech recognition by HMM techniques is presented. Assuming an exponentially decaying time dependency of the states loop probability, the duration density can be factorized and a path early pruning theorem demonstrated. As a consequence, computational complexity is greatly reduced with respect to explicit models, whereas recognition performances improve considerably.

Continuously Variable Transition Probability HMM for Speech Recognition / Falaschi, Alessandro. - STAMPA. - (1992), pp. 125-130. (Intervento presentato al convegno Proceedings of the NATO Advanced Study Institute tenutosi a Cetraro, Italy nel July 1-13, 1990).

Continuously Variable Transition Probability HMM for Speech Recognition

FALASCHI, Alessandro
1992

Abstract

A new duration intrinsic model for improved speech recognition by HMM techniques is presented. Assuming an exponentially decaying time dependency of the states loop probability, the duration density can be factorized and a path early pruning theorem demonstrated. As a consequence, computational complexity is greatly reduced with respect to explicit models, whereas recognition performances improve considerably.
1992
Proceedings of the NATO Advanced Study Institute
Continuous Speech Recognition; HMM; duration probability
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Continuously Variable Transition Probability HMM for Speech Recognition / Falaschi, Alessandro. - STAMPA. - (1992), pp. 125-130. (Intervento presentato al convegno Proceedings of the NATO Advanced Study Institute tenutosi a Cetraro, Italy nel July 1-13, 1990).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/494481
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact