We consider a system of PDEs of Monge-Kantorovich type that, in the isotropic case, describes the stationary configurations of two-layers models in granular matter theory with a general source and a general boundary data. We propose a new weak formulation which is consistent with the physical model and permits us to prove existence and uniqueness results.

Existence and uniqueness of solutions for a boundary value problem arising from granular matter theory / Crasta, Graziano; Malusa, Annalisa. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 259:(2015), pp. 3656-3682. [10.1016/j.jde.2015.04.032]

Existence and uniqueness of solutions for a boundary value problem arising from granular matter theory

CRASTA, Graziano;MALUSA, ANNALISA
2015

Abstract

We consider a system of PDEs of Monge-Kantorovich type that, in the isotropic case, describes the stationary configurations of two-layers models in granular matter theory with a general source and a general boundary data. We propose a new weak formulation which is consistent with the physical model and permits us to prove existence and uniqueness results.
2015
boundary value problems; mass transfer theory
01 Pubblicazione su rivista::01a Articolo in rivista
Existence and uniqueness of solutions for a boundary value problem arising from granular matter theory / Crasta, Graziano; Malusa, Annalisa. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 259:(2015), pp. 3656-3682. [10.1016/j.jde.2015.04.032]
File allegati a questo prodotto
File Dimensione Formato  
Crasta_Existence-and-uniqueness_2015.pdf

solo gestori archivio

Note: http://dx.doi.org/10.1016/j.jde.2015.04.032
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 436.4 kB
Formato Adobe PDF
436.4 kB Adobe PDF   Contatta l'autore
Crasta_preprint_Existence-and-uniqueness_2015.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 469.72 kB
Formato Unknown
469.72 kB Unknown

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/494243
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact