One of the major issues of the evolution of continental lithospheres is the detachment of the lithospheric mantle that may occur under certain conditions and its impact on the surface. In order to investigate the dynamics of continental delamination, we performed a parametric study using physically scaled laboratory models. The adopted setup is composed of a three-layers visco-elastic body (analog for upper crust, lower crust, lithospheric mantle) locally thickened/thinned to simulate a density anomaly (lithospheric root) and an adjacent weak zone, lying on a low viscosity material simulating the asthenosphere. The results emphasize the interplay between mantle flow, deformation, surface topography and plate motion during a three-phases process: (1) a slow initiation phase controlled by coupling and bending associated with contraction and dynamic subsidence, (2) lateral propagation of the delamination alongside with extension and a complex topographic signal controlled by coupling and buoyancy, while poloidal mantle flow develops around the tip of the delaminating lithospheric mantle, and (3) a late phase characterized by a counterflow that triggers retroward motion of the whole model. A semiquantitative study allows us to determine empirically two parameters: (1) an initiation parameter that constrains the propensity of the delamination to occur and correlates with the duration of the first stage, (2) a buoyancy parameter characterizing the delamination velocity during late stages and therefore its propensity to cease. Finally, we point out similarities and differences with the Sierra Nevada (California, USA) in terms of topography, deformation and timing of delamination. Copyright 2012 by the American Geophysical Union.

Continental delamination: Insights from laboratory models / F., Bajolet; J., Galeano Prieto; F., Funiciello; Moroni, Monica; A. M., Negredo; C., Faccenna. - In: GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS. - ISSN 1525-2027. - 13:1(2012). [10.1029/2011gc003896]

Continental delamination: Insights from laboratory models

MORONI, Monica;
2012

Abstract

One of the major issues of the evolution of continental lithospheres is the detachment of the lithospheric mantle that may occur under certain conditions and its impact on the surface. In order to investigate the dynamics of continental delamination, we performed a parametric study using physically scaled laboratory models. The adopted setup is composed of a three-layers visco-elastic body (analog for upper crust, lower crust, lithospheric mantle) locally thickened/thinned to simulate a density anomaly (lithospheric root) and an adjacent weak zone, lying on a low viscosity material simulating the asthenosphere. The results emphasize the interplay between mantle flow, deformation, surface topography and plate motion during a three-phases process: (1) a slow initiation phase controlled by coupling and bending associated with contraction and dynamic subsidence, (2) lateral propagation of the delamination alongside with extension and a complex topographic signal controlled by coupling and buoyancy, while poloidal mantle flow develops around the tip of the delaminating lithospheric mantle, and (3) a late phase characterized by a counterflow that triggers retroward motion of the whole model. A semiquantitative study allows us to determine empirically two parameters: (1) an initiation parameter that constrains the propensity of the delamination to occur and correlates with the duration of the first stage, (2) a buoyancy parameter characterizing the delamination velocity during late stages and therefore its propensity to cease. Finally, we point out similarities and differences with the Sierra Nevada (California, USA) in terms of topography, deformation and timing of delamination. Copyright 2012 by the American Geophysical Union.
2012
continental lithosphere; delamination; sierra nevada; analog modeling; mantle flow; dynamic topography
01 Pubblicazione su rivista::01a Articolo in rivista
Continental delamination: Insights from laboratory models / F., Bajolet; J., Galeano Prieto; F., Funiciello; Moroni, Monica; A. M., Negredo; C., Faccenna. - In: GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS. - ISSN 1525-2027. - 13:1(2012). [10.1029/2011gc003896]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/494133
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 32
social impact